化工进展 ›› 2021, Vol. 40 ›› Issue (S1): 1-12.DOI: 10.16085/j.issn.1000-6613.2021-0465
路青强1(), 陈琳琳2(), 巢艳红3, 李小为2, 蒋磊4, 朱文帅2()
收稿日期:
2021-03-08
修回日期:
2021-03-22
出版日期:
2021-10-25
发布日期:
2021-11-09
通讯作者:
朱文帅
作者简介:
路青强(1996—),男,硕士研究生,研究方向为锂资源的提取。E-mail:基金资助:
LU Qingqiang1(), CHEN Linlin2(), CHAO Yanhong3, LI Xiaowei2, JIANG Lei4, ZHU Wenshuai2()
Received:
2021-03-08
Revised:
2021-03-22
Online:
2021-10-25
Published:
2021-11-09
Contact:
ZHU Wenshuai
摘要:
随着新能源行业在世界范围内的快速发展,金属锂因其能量密度高等优势被广泛应用,从蕴含大量锂资源的盐湖卤水中提锂是获取锂资源的重要方向。盐湖提锂的方法主要有碳化法、沉淀法、离子筛吸附法、电化学辅助法等。离子筛吸附法适合从浓度低的液相中选择性回收锂,其中钛系锂离子筛因其稳定性强、吸附容量大而成为吸附法的研究热点。本文以钛系锂离子筛技术为立足点,对全球锂资源分布现状、钛系锂离子筛提锂机理进行了分析,综述了目前钛氧化物锂离子筛的合成方法、成型方法、现存的问题等,为后续开发新型钛系锂离子筛,提高饱和吸附容量等方面提供参考。
中图分类号:
路青强, 陈琳琳, 巢艳红, 李小为, 蒋磊, 朱文帅. 钛系锂离子筛用于盐湖提锂的研究进展[J]. 化工进展, 2021, 40(S1): 1-12.
LU Qingqiang, CHEN Linlin, CHAO Yanhong, LI Xiaowei, JIANG Lei, ZHU Wenshuai. Research progress of titanium-based lithium ion sieve for extracting lithium from salt lake brine[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 1-12.
1 | 高峰, 郑绵平, 乜贞, 等. 盐湖卤水锂资源及其开发进展[J]. 地球学报, 2011, 32(4): 483-492. |
GAO Feng, ZHENG Mianping, NIE Zhen, et al. Brine lithium resource in the salt lake and advances in its exploitation[J]. Acta Geoscientica Sinica, 2011, 32(4): 483-492. | |
2 | 邓南平, 马晓敏, 阮艳莉, 等. 锂硫电池系统研究与展望[J]. 化学进展, 2016, 28(9): 1435-1454. |
DENG Nanping, MA Xiaomin, RUAN Yanli, et al. Research and prospect of lithium-sulfur battery system[J]. Progress in Chemistry, 2016, 28(9): 1435-1454. | |
3 | EBENSPERGER A, MAXWELL P, MOSCOSO C. The lithium industry: its recent evolution and future prospects[J]. Resources Policy, 2005, 30(3): 218-231. |
4 | GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. |
5 | ZHANG L C, LI L J, RUI H M, et al. Lithium recovery from effluent of spent lithium battery recycling process using solvent extraction[J]. Journal of Hazardous Materials, 2020, 398: 122840. |
6 | CHEN Y, LU Y H, LIU Z H, et al. Efficient dissolution of lithium-ion batteries cathode LiCoO2 by polyethylene glycol-based deep eutectic solvents at mild temperature[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(31): 11713-11720. |
7 | POMERANTSEVA E, BONACCORSO F, FENG X L, et al. Energy storage: the future enabled by nanomaterials[J]. Science, 2019, 366(6468): EAAN8285. |
8 | TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359-367. |
9 | ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652-657. |
10 | CHOUBEY P K, CHUNG K S, KIM M S, et al. Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: from sea water and spent lithium ion batteries (LIBs)[J]. Minerals Engineering, 2017, 110: 104-121. |
11 | CHOUBEY P K, KIM M S, SRIVASTAVA R R, et al. Advance review on the exploitation of the prominent energy-storage element: Lithium. Part Ⅰ: From mineral and brine resources[J]. Minerals Engineering, 2016, 89: 119-137. |
12 | BATTISTEL A, PALAGONIA M S, BROGIOLI D, et al. Electrochemical methods for lithium recovery: a comprehensive and critical review[J]. Advanced Materials, 2020, 32(23): e1905440. |
13 | MOHR S H, MUDD G M, GIURCO D. Lithium resources and production: critical assessment and global projections[J]. Minerals, 2012, 2(1): 65-84. |
14 | ZHOU P, TANG J R, XIANG R J. Prospect of lithium resources supply and demand[J]. Acta Geologica Sinica, 2014, 88(S1): 287-288. |
15 | TADESSE B, MAKUEI F, ALBIJANIC B, et al. The beneficiation of lithium minerals from hard rock ores: a review[J]. Minerals Engineering, 2019, 131: 170-184. |
16 | 吴静, 任秀莲, 魏琦峰. 盐湖卤水中锂的分离提取研究进展[J]. 无机盐工业, 2020, 52(12): 1-6. |
WU Jing, REN Xiulian, WEI Qifeng. Research progress on separation and extraction of lithium from salt-lake brine[J]. Inorganic Chemicals Industry, 2020, 52(12): 1-6. | |
17 | GROSJEAN C, MIRANDA P H, PERRIN M, et al. Assessment of world lithium resources and consequences of their geographic distribution on the expected development of the electric vehicle industry[J]. Renewable and Sustainable Energy Reviews, 2012, 16(3): 1735-1744. |
18 | MESHRAM P, PANDEY B D, MANKHAND T R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review[J]. Hydrometallurgy, 2014, 150: 192-208. |
19 | CAHIT Helvaci, HASAN Mordogon, Çolak MUMTAZ, et al. Presence and distribution of lithium in borate deposits and some recent lake water of west-central Turkey[J]. International Geology Review, 2003, 45: 1-13. |
20 | TKACHEV A V, RUNDQVIST D V, VISHNEVSKAYA N A. The main features of lithium metallogeny in geological time[J]. Doklady Earth Sciences, 2019, 484(1): 32-36. |
21 | KESLER S E, GRUBER P W, MEDINA P A, et al. Global lithium resources: relative importance of pegmatite, brine and other deposits[J]. Ore Geology reviews, 2012, 48: 55-69. |
22 | GRUBER P W, MEDINA P A, KEOLEIAN G A, et al. Global lithium availability[J]. Journal of Industrial Ecology, 2011, 15(5): 760-775. |
23 | YANG S X, ZHANG F, DING H P, et al. Lithium metal extraction from seawater[J]. Joule, 2018, 2(9): 1648-1651. |
24 | YAN Q X, LI X H, WANG Z X, et al. Extraction of lithium from lepidolite by sulfation roasting and water leaching[J]. International Journal of Mineral Processing, 2012, 110/111: 1-5. |
25 | 杨晶晶, 秦身钧, 张健雅, 等. 锂提取方法研究进展与展望[J]. 化工矿物与加工, 2012, 41(6): 44-46. |
YANG Jingjing, QIN Shenjun, ZHANG Jianya, et al. Research and prospect on lithium extraction[J]. Industrial Minerals & Processing, 2012, 41(6): 44-46. | |
26 | BERTAU M, VOIGT W, SCHNEIDER A, et al. Lithiumgewinnung aus anspruchsvollen Lagerstätten: zinnwaldit und magnesiumreiche Salzseen[J]. Chemie Ingenieur Technik, 2017, 89(1/2): 64-81. |
27 | 赵旭, 张琦, 武海虹, 等. 盐湖卤水提锂[J]. 化学进展, 2017, 29(7): 796-808. |
ZHAO Xu, ZHANG Qi, WU Haihong, et al. Extraction of lithium from salt lake brine[J]. Progress in Chemistry, 2017, 29(7): 796-808. | |
28 | AN J W, KANG D J, TRAN K T, et al. Recovery of lithium from Uyuni salar brine[J]. Hydrometallurgy, 2012, 117/118: 64-70. |
29 | KARIDAKIS T, AGATZINI-LEONARDOU S, NEOU-SYNGOUNA P. Removal of magnesium from nickel laterite leach liquors by chemical precipitation using calcium hydroxide and the potential use of the precipitate as a filler material[J]. Hydrometallurgy, 2005, 76(1/2): 105-114. |
30 | HULL T R, WITKOWSKI A, HOLLINGBERY L. Fire retardant action of mineral fillers[J]. Polymer Degradation and Stability, 2011, 96(8): 1462-1469. |
31 | NAN J M, HAN D M, ZUO X X. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction[J]. Journal of Power Sources, 2005, 152: 278-284. |
32 | 朱加乾, 徐宝金, 宋学文, 等. 提锂技术进展[J]. 金属矿山, 2018(8): 62-69. |
ZHU Jiaqian, XU Baojin, SONG Xuewen, et al. Process of extracting lithium technology[J]. Metal Mine, 2018(8): 62-69. | |
33 | 钱方仁. 锰系锂离子吸附剂的掺杂改性及吸附性能研究[D]. 北京: 中国科学院大学, 2020. |
QIAN Fangren. Study on doping modification and adsorption performance of manganese-based lithium ion adsorbent[D]. Beijing: Chinese Academy of Sciences, 2020. | |
34 | ONODERA Y, IWASAKI T, HAYASHI H, et al. ChemInform abstract: a new inorganic material with high selective adsorbability for lithium ions[J]. ChemInform, 1989, 20(17): 035. |
35 | LI X W, CHAO Y H, CHEN L L, et al. Taming wettability of lithium ion sieve via different TiO2 precursors for effective Li recovery from aqueous lithium resources[J]. Chemical Engineering Journal, 2020, 392: 123731. |
36 | 柏春, 郭敏, 张慧芳, 等. 离子筛型锂吸附剂吸附法从盐湖卤水/海水中提锂的研究进展[J]. 化工进展, 2017, 36(3): 802-809. |
BAI Chun, GUO Min, ZHANG Huifang, et al. The research progress of extracting lithium from brine by lithium ion sieve[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 802-809. | |
37 | 卞维柏, 潘建明. 选择性吸附提锂材料的研究进展[J]. 化工进展, 2020, 39(6): 2206-2217. |
BIAN Weibai, PAN Jianming. Research progress in selective adsorption materialsfor lithium extraction[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2206-2217. | |
38 | 唐娜, 龚经款, 项军. 铝基锂吸附剂制备及其吸附性能研究[J]. 无机盐工业, 2020, 52(8): 51-56. |
TANG Na, GONG Jingkuan, XIANG Jun. Preparation and adsorption properties of aluminum-based lithium adsorbent[J]. Inorganic Chemicals Industry, 2020, 52(8): 51-56. | |
39 | 郭敏, 刘忠, 李权, 等. 铝基锂吸附剂从卤水中吸附提锂的研究及进展[J]. 青海科技, 2019, 26(3): 16-20. |
GUO Min, LIU Zhong, LI Quan, et al. Research and development of aluminum based lithium adsorbent for lithium extraction from brine [J]. Qinghai Science and Technology, 2019, 26(3): 16-20. | |
40 | 许乃才, 黎四霞, 曹佳佳, 等. 锰氧化物锂离子筛的掺杂改性及吸附性能研究[J]. 无机盐工业, 2020, 52(4): 37-41. |
XU Naicai, LI Sixia, CAO Jiajia, et al. Research on doping modification and adsorption performance of manganese oxides lithium ion sieve[J]. Inorganic Chemicals Industry, 2020, 52(4): 37-41. | |
41 | 杨珊珊, 阮慧敏, 沈江南, 等. 尖晶石型锂锰氧化物离子筛的制备方法及构效性能分析[J]. 化工进展, 2015, 34(6): 1690-1698, 1736. |
YANG Shanshan, RUAN Huimin, SHEN Jiangnan, et al. Preparation methods and analyses of structural performance of spinel-type lithium manganese oxide ion sieves[J]. Chemical Industry and Engineering Progress, 2015, 34(6): 1690-1698, 1736. | |
42 | MARTHI R, SMITH Y R. Selective recovery of lithium from the Great Salt Lake using lithium manganese oxide-diatomaceous earth composite[J]. Hydrometallurgy, 2019, 186: 115-125. |
43 | JIANG J H. The synthesis and ion-exchange property of Li+ Memorized spinel Li2.5Ti1.375O4[J]. Advanced Materials Research, 2012, 457/458: 26-29. |
44 | ZHANG Q H, LI S P, SUN S Y, et al. Lithium selective adsorption on low-dimensional titania nanoribbons[J]. Chemical Engineering Science, 2010, 65(1): 165-168. |
45 | 张丽芬, 陈白珍, 石西昌, 等. 偏钛酸型锂吸附剂的合成及吸附性能[J]. 中国有色金属学报, 2010, 20(9): 1849-1854. |
ZHANG Lifen, CHEN Baizhen, SHI Xichang, et al. Synthesis and adsorption property of H2TiO3 type adsorbent[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1849-1854. | |
46 | CHEN C W, CHEN P A, WEI C J, et al. Lithium recovery with LiTi2O4 ion-sieves[J]. Marine Pollution Bulletin, 2017, 124(2): 1106-1110. |
47 | WANG S L, CHEN X, ZHANG Y, et al. Lithium adsorption from brine by iron-doped titanium lithium ion sieves[J]. Particuology, 2018, 41: 40-47. |
48 | 董殿权, 张凤宝, 张国亮, 等. LiAlTiO4的合成及对Li+的离子交换选择性[J]. 应用化学, 2005, 22(7): 754-758. |
DONG Dianquan, ZHANG Fengbao, ZHANG Guoliang, et al. Synthesis of LiAlTiO4 and its selectivity to Li+ exchange[J]. Chinese Journal of Applied Chemistry, 2005, 22(7): 754-758. | |
49 | 钱方仁, 郭敏, 赵炳, 等. Mg2+掺杂对H1.6Mn1.6O4锂离子筛吸附性能的影响[J]. 盐湖研究, 2020, 28(2): 1-14. |
QIAN Fangren, GUO Min, ZHAO Bing, et al. Effect of Mg doping on adsorption property of H1.6Mn1.6O4 lithium ion sieve[J]. Journal of Salt Lake Research, 2020, 28(2): 1-14. | |
50 | 董殿权, 刘维娜, 刘亦凡. LiNi0.05Mn1.95O4的合成及对Li+的离子交换动力学[J]. 无机化学学报, 2009, 25(7): 1238-1242. |
DONG Dianquan, LIU Weina, LIU Yifan. Synthesis of LiNi0.05Mn1.95O4 and its ion-exchange kinetics for Li+[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(7): 1238-1242. | |
51 | CHITRAKAR R, MAKITA Y, OOI K, et al. Lithium recovery from salt lake brine by H2TiO3[J]. Dalton Transactions, 2014, 43(23): 8933-8939. |
52 | HOSOGI Y, KATO H, KUDO A. Visible light response of AgLi1/3M2/3O2(M = Ti and Sn) synthesized from layered Li2MO3 using molten AgNO3[J]. Journal of Materials Chemistry, 2008, 18(6): 647-653. |
53 | 潘鑫, 曾文文, 何周坤, 等. 钛系锂离子筛盐湖提锂的研究进展[J]. 云南化工, 2019, 46(2): 25-32. |
PAN Xin, ZENG Wenwen, HE Zhoukun, et al. Research progress of titanium lithium-ion sievein salt-lake lithium extraction[J]. Yunnan Chemical Technology, 2019, 46(2): 25-32. | |
54 | ZHANG L Y, LIU Y W, HUANG L, et al. A novel study on preparation of H2TiO3-lithium adsorbent with titanyl sulfate as titanium source by inorganic precipitation-peptization method[J]. RSC Advances, 2018, 8(3): 1385-1391. |
55 | WEI S D, WEI Y F, CHEN T, et al. Porous lithium ion sieves nanofibers: general synthesis strategy and highly selective recovery of lithium from brine water[J]. Chemical Engineering Journal, 2020, 379: 122407. |
56 | MOAZENI M, HAJIPOUR H, ASKARI M, et al. Hydrothermal synthesis and characterization of titanium dioxide nanotubes as novel lithium adsorbents[J]. Materials Research Bulletin, 2015, 61: 70-75. |
57 | 董殿权, 张凤宝, 张国亮, 等. Li4Ti5O12的合成及对Li+的离子交换动力学[J]. 物理化学学报, 2007, 23(6): 950-954. |
DONG Dianquan, ZHANG Fengbao, ZHANG Guoliang, et al. Synthesis of Li4Ti5O12 and its exchange kinetics with Li+[J]. Acta Physico: Chimica Sinica, 2007, 23(6): 950-954. | |
58 | 闫树旺, 钟辉, 黄志华. 粒状二氧化钛交换剂的研制及从卤水中提取锂[J]. 离子交换与吸附, 1994, 10(3): 219-225. |
YAN Shuwang, ZHONG Hui, HUANG Zhihua. Preparation for the granulated titanium dioxide inorganic ion-exchanger and recovery of lithium from brine[J]. Ion Exchange and Adsorption, 1994, 10(3): 219-225. | |
59 | GU D L, SUN W J, HAN G F, et al. Lithium ion sieve synthesized via an improved solid state method and adsorption performance for West Taijinar Salt Lake brine[J]. Chemical Engineering Journal, 2018, 350: 474-483. |
60 | 颜辉, 钟辉, 陈念. 新型锂吸附剂的制备研究[J]. 无机盐工业, 2014, 46(2): 38-40. |
YAN Hui, ZHONG Hui, CHEN Nian. Preparation of new lithium adsorbents[J]. Inorganic Chemicals Industry, 2014, 46(2): 38-40. | |
61 | LIN H Y, YU X P, LI M L, et al. Synthesis of polyporous ion-sieve and its application for selective recovery of lithium from geothermal water[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26364-26372. |
62 | WANG S L, LI P, CUI W W, et al. Hydrothermal synthesis of lithium-enriched β-Li2TiO3 with an ion-sieve application: excellent lithium adsorption[J]. RSC Advances, 2016, 6(104): 102608-102616. |
63 | ZHANG L Y, ZHOU D L, YAO Q Q, et al. Preparation of H2TiO3-lithium adsorbent by the sol-gel process and its adsorption performance[J]. Applied Surface Science, 2016, 368: 82-87. |
64 | LI N, LU D L, ZHANG J L, et al. Yolk-shell structured composite for fast and selective lithium ion sieving[J]. Journal of Colloid and Interface Science, 2018, 520: 33-40. |
65 | 陈念. 溶胶-凝胶法合成锂离子筛及其吸附性能研究[D]. 成都: 成都理工大学, 2015. |
CHEN Nian. Study on synthesis and adsorption properties of lithium ion sieve by sol-gel method[D]. Chengdu: Chengdu University of Technology, 2015. | |
66 | 李静, 李利军, 高艳芳, 等. 模板法制备纳米材料[J]. 材料导报, 2011, 25(S2): 5-9. |
LI Jing, LI Lijun, GAO Yanfang, et al. Preparation of nanomaterials employing template method[J]. Materials Review, 2011, 25(S2): 5-9. | |
67 | 郑建国. 钛、锆复合氧化物的合成及对Li+的吸附交换性能研究[D]. 青岛: 青岛科技大学, 2016. |
ZHENG Jianguo. Study on the preparation and Li+ adsorption exchange property of titanium and zirconi um compond oxides[D]. Qingdao: Qingdao University of Science & Technology, 2016. | |
68 | 董殿权, 毕参参, 李晶, 等. 三维有序大孔锂离子筛的制备及其交换性能研究[J]. 无机化学学报, 2012, 28(7): 1423-1428. |
DONG Dianquan, BI Shenshen, LI Jing, et al. Preparation and performance study of three-dimensionally ordered macroporous lithium ion-sieve[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(7): 1423-1428. | |
69 | XU X, ZHOU Y, FAN M H, et al. Lithium adsorption performance of a three-dimensional porous H2TiO3-type lithium ion-sieve in strong alkaline Bayer liquor[J]. RSC Advances, 2017, 7(31): 18883-18891. |
70 | 刘文涛, 刘亦凡. 锂离子交换体Li1.5Ti1. 625O 4的研究(Ⅰ)——Li1.5Ti1.625O4的合成及锂的抽出/嵌入[J]. 离子交换与吸附, 2011, 27(1): 69-74. |
LIU Wentao, LIU Yifan. Study on the lithium ion permutoid Li1.5Ti1.625O4(Ⅰ)—Synthesis of Li1.5Ti1.625O4, as well as the extraction/embedment of lithium[J]. Ion Exchange and Adsorption, 2011, 27(1): 69-74. | |
71 | ZHANG Liyuan, LIU Yiwu, ZHOU Dali, et al. Dynamic adsorption and elution performances of H2TiO3-lithium adsorbent loaded on ceramic foams[J]. Journal of Sichuan University(Natural science edition), 2017, 54(6): 1275-1280. |
72 | 李超. 锂离子筛成型过程研究[D]. 上海: 华东理工大学, 2014. |
LI Chao. Granulation process of lithium ion-sieve[D]. Shanghai: East China University of Science and Technology, 2014. | |
73 | MANI J, KATZKE H, HABOUTI S, et al. A template-free synthesis and structural characterization of hierarchically nano-structured lithium-titanium-oxide films[J]. Journal of Materials Chemistry, 2012, 22(14): 6632-6638. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[3] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[4] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[5] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[6] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[7] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[8] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[9] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[10] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[11] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[12] | 李佳, 樊星, 陈莉, 李坚. 硝酸生产尾气中NO x 和N2O联合脱除技术研究进展[J]. 化工进展, 2023, 42(7): 3770-3779. |
[13] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[14] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[15] | 汪嘉欣, 潘勇, 熊欣怡, 万晓月, 王建超. 甲苯一步催化硝化制备二硝基甲苯反应过程及危险性[J]. 化工进展, 2023, 42(7): 3420-3430. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |