化工进展 ›› 2021, Vol. 40 ›› Issue (S1): 13-26.DOI: 10.16085/j.issn.1000-6613.2021-0157
收稿日期:
2021-01-22
修回日期:
2021-02-15
出版日期:
2021-10-25
发布日期:
2021-11-09
通讯作者:
邵卫卫
作者简介:
杨光(1993—),男,博士研究生,研究方向为传热与冷却。E-mail:基金资助:
YANG Guang1(), SHAO Weiwei1,2,3()
Received:
2021-01-22
Revised:
2021-02-15
Online:
2021-10-25
Published:
2021-11-09
Contact:
SHAO Weiwei
摘要:
印刷电路板换热器的流道是由光化学反应在金属换热板上刻蚀形成,采用扩散连接的方式将冷热换热板叠加成换热芯体。与传统换热器相比,印刷电路板换热器具有效率高、结构紧凑、高耐温耐压性等诸多优势,目前在核电站、新型太阳能发电、制氢工业以及燃气轮机中均有广泛应用。为了进一步提高印刷电路板换热器的综合性能,使其得到更广泛的应用,本文对印刷电路板换热器的性能评价指标、结构优化研究现状以及相关的工业应用进行了全面的归纳和分析,同时通过回顾国内外相关研究,对印刷电路板换热器(PCHE)未来的发展方向和应用潜力进行了展望,为印刷电路板换热器的结构设计优化提供参考。
中图分类号:
杨光, 邵卫卫. 印刷电路板换热器结构及传热关联式研究进展[J]. 化工进展, 2021, 40(S1): 13-26.
YANG Guang, SHAO Weiwei. Review of optimization and heat transfer correlations of printed circuit heat exchanger[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 13-26.
1 | MYLAVARAPU S K, FIGLEY J, SUN X, et al. Development and testing of printed circuit heat exchanger for generation Ⅳ reactors [J]. Transactions of the American Nuclear Society, 2008, 98(1): 626-627. |
2 | WADEKAR V. Improving industrial heat transfer-compact and not-so-compact heat exchangers [J]. Journal of Enhanced Heat Transfer,1998, 5(1): 53-69. |
3 | RIDLUAN A, MANIC M, TOKUHIRO A. EBaLM-THP—A neural network thermohydraulic prediction model of advanced nuclear system components [J]. Nuclear Engineering and Design, 2009,329(2):308-319. |
4 | SU G, FUKUDA K, JIA D, et al. Application of an artificial neural network in reactor thermohydraulic problem: prediction of critical heat flux [J].Journal of Nuclear Science and Technology, 2002,39(5):564-571. |
5 | XIN F, MA T, WANG Q. Spray etching rate development of stainless steel in the etchant for printed circuit heat exchanger channels [J].Energy Procedia, 2017, 105: 4828-4838. |
6 | XIN F, MA T, CHEN Y, et al. Study on chemical spray etching of stainless steel for printed circuit heat exchanger channels [J]. Nuclear Engineering and Design, 2019, 341: 91-99. |
7 | SARANAM V R, PAUL B K. Feasibility of using diffusion bonding for producing hybrid printed circuit heat exchangers for nuclear energy applications [J]. Procedia Manufacturing, 2018, 26: 560-569. |
8 | KIM U S, SHIN S S, KIM K G, et al. Bonding properties on diffusion bonding layer for micro PCD-WC tool fabrication [J]. Journal of Mechanical Science & Technology, 2019, 33(8): 3749-3754. |
9 | MYLAVARAPU S K, SUN X, CHRISTENSEN R N, et al. Fabrication and design aspects of high-temperature compact diffusion bonded heat exchangers [J]. Nuclear Engineering and Design, 2012,249(8):49-56. |
10 | SHIN Jeong-Heon, KIM Dong-Ho, JUNG Young-Chul, et al. An experimental study of the pressure drop in the Printed Circuit Heat Exchanger (PCHE) [J]. 대한기계학회 춘추학술대회, 2017(5): 5-6. |
11 | NIKITIN K, KATOA Y, NGOA L. Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2 experimental loop [J]. International Journal of Refrigeration, 2006, 29(5): 807-814. |
12 | MA T, LI M J, XU J L, et al. Thermodynamic analysis and performance prediction on dynamic response characteristic of PCHE in 1000 MW S-CO2 coal fired power plant [J]. Energy, 2019, 175: 123-138. |
13 | MARCHIONNI M, CHAI L, BIANCHI G, et al. Numerical modelling and performance maps of a printed circuit heat exchanger for use as recuperator in supercritical CO2 power cycles [J]. Energy Procedia 2019, 161: 472-479. |
14 | PRA F, TOCHON P, MAUGET Cet al. Promising designs of compact heat exchangers for modular HTRs using the Brayton cycle [J]. Nuclear Engineering and Design, 2008, 238(11): 3160-3173. |
15 | WANG M, JOEL A, RAMSHAW C, et al. Process intensification for post-combustion CO2 capture with chemical absorption: a critical review [J]. Applied Energy, 2015, 158: 275-291. |
16 | PARK M Y, SONG M S, KIM E S. Development of tritium permeation model for printed circuit heat exchanger [J]. Annals of Nuclear Energy, 2016, 98(12): 166-177. |
17 | HUANG C, CAI W, WANG Y, et al. Review on the characteristics of flow and heat transfer in printed circuit heat exchangers [J]. Applied Thermal Engineering, 2019, 153: 190-205. |
18 | KIM T, KWON J, YOON S, et al. Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle [J]. Nuclear Engineering and Design, 2015,288(7): 110-118. |
19 | ZHAO Z, ZHOU Y, MA X, et al. Numerical study on thermal hydraulic performance of supercritical LNG in zigzag-type channel PCHEs [J]. Energies, 2019, 12(3): 548. |
20 | ZHAO Z, ZHAO K, JIA D, et al. Numerical investigation on the flow and heat transfer characteristics of supercritical liquefied natural gas in an airfoil fin printed circuit heat exchanger [J]. Energies,2017,10(11): 1828-1846. |
21 | CHANG O, KIM E S, PATTERSON M. Design option of heat exchanger for the next generation nuclear plant [J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(3): 32903-32912. |
22 | NATESANK, MOISSEYTSEV A, MAJUMDAR S. Preliminary issues associated with the next generation nuclear plant intermediate heat exchanger design [J]. Journal of Nuclear Materials, 2009,392(2):307-315. |
23 | SERRANO I P, CANTIZANO A, LINARES J I, et al. Numerical modeling and design of supercritical CO2 pre-cooler for fusion nuclear reactors [J]. Fusion Engineering and Design, 2012, 87(7/8): 1329-1332. |
24 | Yoon S J, SABHARWALL P, KIM E S. Numerical study on crossflow printed circuit heat exchanger for advanced small modular reactors [J]. International Journal of Heat and Mass Transfer, 2014, 70(5): 250-263. |
25 | PARK J H, PARK H S, KWON J G, et al. Optimization and thermodynamic analysis of supercritical CO2 Brayton recompression cycle for various small modular reactors [J]. Energy, 2018,160(1):520-535. |
26 | HINZE J, RAPP L, NELLIS G, et al. Modeling and experimental testing of periodic flow regenerators for sCO2 cycles [J]. Applied Thermal Engineering, 2019, 147: 789-803. |
27 | MESHRAM A, JAISWAL A K, KHIVSARA S D, et al. Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications [J]. Applied Thermal Engineering,2016,109:861-870. |
28 | XIAO G, YANG T, LIU H, et al. Recuperators for micro gas turbines: a review [J]. Applied Energy 2017, 197: 83-99. |
29 | KWON J G, KIM T H, PARK H S, et al. Optimization of airfoil-type PCHE for the recuperator of small scale brayton cycle by cost-based objective function [J]. Nuclear Engineering and Design,2016,298:192-200. |
30 | CONBOY T, WRIGHT S, PASCH J, et al. Performance characteristics of an operating supercritical CO2 brayton cycle [J]. Journal of Engineering for Gas Turbines and Power2012,134(11):111703-111716. |
31 | NIKITIN K, KATO Y, NGO. T L. Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2 experimental loop [J]. International Journal of Refrigeration, 2006, 29(5): 807-814. |
32 | FIGLEY J, SUN X, MYLAVARAPU S K, et al. Numerical study on thermal hydraulic performance of a printed circuit heat exchanger [J]. Progress in Nuclear Energy, 2013, 68: 89-96. |
33 | RAO R, RANGANATH G, RANGANAYAKULU C. Development of colburn ‘j’ factor and fanning friction factor ‘f’ correlations for compact heat exchanger plain fins by using CFD [J]. Heat and Mass Transfer, 2013, 49(7): 991-1000. |
34 | UTAMURA M, NIKITIN K, KATO Y. Generalization of logarithmic mean temperature difference method for heat exchanger performance analysis [J]. Thermal Science and Engineering, 2007, 15(3): 163-173. |
35 | REN Z, ZHAO C R, JIANG P X, et al. Investigation on local convection heat transfer of supercritical CO2 during cooling in horizontal semicircular channels of printed circuit heat exchanger [J]. Applied Thermal Engineering, 2019, 157: 113697-113751. |
36 | MA T, PASQUIER U, CHEN Y, et al. Numerical study on thermal-hydraulic performance of a two-sided etched zigzag-type high-temperature printed circuit heat exchanger [J]. Energy Procedia, 2017, 142: 3950-3955. |
37 | POORANACHANDRAN K, VELLAISAMY K, Ramalingam V. Fanning friction (f) and colburn (j) factors of a louvered fin and flat tube compact heat exchanger [J]. Thermal Science, 2017,21(1):141-150. |
38 | RAO R, RANGANATH G, RANGANAYAKULU C. Development of colburn j factor and fanning friction factor correlations for compact surfaces of the triangular perforated fins using CFD [J]. Heat Transfer Engineering, 2016, 37(2): 150-161. |
39 | LEE S M, KIM K Y. Comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations [J]. Heat and Mass Transfer, 2013, 49(7): 1021-1028. |
40 | WEBB R L. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design [J]. International Journal of Heat and Mass Transfer, 1981, 24(4): 715-726. |
41 | SAEED M, KIM M H. Thermal-hydraulic analysis of sinusoidal fin-based printed circuit heat exchangers for supercritical CO2 Brayton cycle [J]. Energy Conversion and Management, 2019, 193: 124-139. |
42 | FAN J F, DING W, ZHANG J, et al. A performance evaluation plot of enhanced heat transfer techniques oriented for energy-saving [J]. International Journal of Heat and Mass Transfer, 2009, 52(1/2): 33-44. |
43 | PEI B, CHEN Z, LI F. Flow and heat transfer of supercritical CO2 in the honeycomb ultra-compact plate heat exchanger [J]. The Journal of Supercritical Fluids, 2019, 148: 1-8. |
44 | CUI X, GUO J, HUAI X, et al. Numerical study on novel airfoil fins for printed circuit heat exchanger using supercritical CO2 [J]. International Journal of Heat and Mass Transfer, 2018, 121(35): 354-366. |
45 | HESSELGREAVES J E. Rationalisation of second law analysis of heat exchangers [J]. International Journal of Heat and Mass Transfer, 2000,43(22): 4189-4204. |
46 | 柳雄斌, 过增元. 换热器性能分析新方法 [J]. 物理学报, 2009, 58(7):4766-4771. |
LIU Xiongbin, GUO Zengyuan. A novel method for heat exchanger analysis [J]. Acta Physica Sinica, 2009, 58(7): 4766-4771. | |
47 | JI W T, FAN J F, ZHAO C Y, et al. A revised performance evaluation method for energy saving effectiveness of heat transfer enhancement techniques [J]. International Journal of Heat & Mass Transfer, 2019, 138(8): 1142-1153. |
48 | LI H, KRUIZENGA A, ANDERSON M, et al. Development of a new forced convection heat transfer correlation for CO2 in both heating and cooling modes at supercritical pressures [J]. International Journal of Thermal Sciences, 2011, 50(12): 2430-2442. |
49 | KRUIZENGA A, LI H, ANDERSON M, et al. Supercritical carbon dioxide heat transfer in horizontal semicircular channels [J]. Journal of Heat Transfer, 2012, 134(8): 81802-81812. |
50 | ZHANG Y, PENG M, XIA G,et al. Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube [J]. Applied Thermal Engineering, 2019, 154: 380-392. |
51 | HOU Yaqiong, TANG Guihua. Thermal-hydraulic-structural analysis and design optimization for micron-sized printed circuit heat exchanger [J]. Journal of Thermal Science, 2019, 28(2): 252-261. |
52 | KIM Y H, SEO J E, CHOI Y J, et al. Heat transfer characteristics and pressure drop in straight microchannel of the printed circuit heat exchangers [J]. Transactions of the Korean Society of Mechanical Engineers B, 2015, 32(12): 915-923. |
53 | KIM J H, BAEK S, JEONG S, et al. Hydraulic performance of a microchannel PCHE [J]. Applied Thermal Engineering, 2010, 30(14/15): 2157-2162. |
54 | KIM J T, HEO H J, KIM H J, et al. Effect of heating rates on microstructures in brazing joints of STS304 compact heat exchanger using MBF 20 [J]. Journal of Welding and Joining, 2016, 34(2): 46-53. |
55 | KIM I H, NO H C. Physical model development and optimal design of PCHE for intermediate heat exchangers in HTGRs [J]. Nuclear Engineering and Design, 2012, 243(2): 243-250. |
56 | LEE S M, KIM K Y, KIM S W. Multi-objective optimization of a double-faced type printed circuit heat exchanger [J]. Applied Thermal Engineering, 2013, 60(1/2): 44-50. |
57 | MARCHIONNI M, CHAI L, BIANCHI G, et al. Numerical modelling and transient analysis of a printed circuit heat exchanger used as recuperator for supercritical CO2 heat to power conversion systems [J]. Applied Thermal Engineering, 2019, 161: 114190-114212. |
58 | CHEN M, SUN X, CHRISTENSEN R, et al. Experimental and numerical study of a printed circuit heat exchanger [J]. Annals of Nuclear Energy, 2016, 97: 221-231. |
59 | CHEN M, SUN X, CHRISTENSEN R, et al. Dynamic behavior of a high-temperature printed circuit heat exchanger: numerical modeling and experimental investigation [J]. Applied Thermal Engineering, 2018, 135: 246-256. |
60 | LI X L, TANG G H, FAN Y H, et al. Numerical analysis of slotted airfoil fins for printed circuit heat exchanger in S-CO2 brayton cycle [J]. Journal of Nuclear Engineering and Radiation Science, 2019,5(4):041303-041345. |
61 | CHU X, LAURIEN E. Flow stratification of supercritical CO2 in a heated horizontal pipe [J]. The Journal of Supercritical Fluids,2016,116: 172-189. |
62 | LI Y, XIE Y, ZHANG D. The thermal hydraulic performance of wavy PCHE with different materials and geometric parameters [J]. MATEC Web of Conferences, 2018, 207: 4008-4013. |
63 | JEON S, BAIK Y, BYON C, et al. Thermal performance of heterogeneous PCHE for supercritical CO2 energy cycle [J]. International Journal of Heat and Mass Transfer, 2016, 102: 867-876. |
64 | LEE S M, KIM K Y. Optimization of zigzag flow channels of a printed circuit heat exchanger for nuclear power plant application [J]. Journal of Nuclear Science and Technology, 2012, 49(3): 343-351. |
65 | KOO G, LEE S, KIM K. Shape optimization of inlet part of a printed circuit heat exchanger using surrogate modeling [J]. Applied Thermal Engineering, 2014, 72(1): 90-96. |
66 | SEO J W, KIM Y H, KIM D, et al. Heat transfer and pressure drop characteristics in straight microchannel of printed circuit heat exchangers [J]. Entropy, 2015, 17(5): 3438-3457. |
67 | CHEN M, SUN X, CHRISTENSEN R, et al. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger [J]. Applied Thermal Engineering, 2016, 108: 1409-1417. |
68 | CHU W, LI X, MA T, et al. Experimental investigation on SCO2-water heat transfer characteristics in a printed circuit heat exchanger with straight channels [J]. International Journal of Heat and Mass Transfer, 2017, 113(10): 184-194. |
69 | NIKITIN K, KATO Y, NGO L. Printed circuit heat exchanger thermal-hydraulic performance in supercritical CO2 experimental loop [J]. International Journal of Refrigeration, 2006, 29(5): 807-814. |
70 | GUO Z Y, TAO W Q, SHAH R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer [J]. International Journal of Heat and Mass Transfer, 2005,48(9): 1797-1807. |
71 | 闫云飞, 刘科, 张力. 强化换热凹槽管内流动与传热数值模拟[J]. 化工进展, 2010, 29(12): 2250-2253. |
YAN Yunfei, LIU Ke, ZHANG Li. Numerical investigation on flow and heat transfer in heat transfer enhancement fluted tube[J]. Chemical Industry and Engineering Progress, 2010, 29(12): 2250-2253. | |
72 | MA T, LI L, XU X Y, et al. Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature [J]. Energy Conversion and Management, 2015, 104(11): 55-66. |
73 | BENNETT K, CHEN Y T. Thermal-hydraulic correlations for zigzag-channel PCHEs covering a broad range of design parameters for estimating performance prior to modeling [J]. Thermal Science and Engineering Progress, 2019, 17: 100383. |
74 | KWON O K, CHOI M J, CHOI Y J. Heat transfer and pressure drop characteristics in zigzag channel angles of printed circuit heat exchangers [J]. Korean Journal of Air-Conditioning and Refrigeration Engineering, 2009, 21(9): 475-482. |
75 | CHEN M, SUN X, CHRISTENSEN R N. Thermal-hydraulic performance of printed circuit heat exchangers with zigzag flow channels [J]. International Journal of Heat and Mass Transfer, 2019, 130: 356-367. |
76 | YOON S, O'BRIEN J, CHen M, et al. Development and validation of Nusselt number and friction factor correlations for laminar flow in semi-circular zigzag channel of printed circuit heat exchanger [J]. Applied Thermal Engineering, 2017, 123: 1327-1344. |
77 | KIM S, LEE Y, AHN Y, et al. CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application [J]. Annals of Nuclear Energy, 2016, 92(7): 175-185. |
78 | PIDAPARTI S R, ANDERSON M H, RANJAN D. Experimental investigation of thermal-hydraulic performance of discontinuous fin printed circuit heat exchangers for supercritical CO2 power cycles [J]. Experimental Thermal and Fluid Science, 2019, 106: 119-129. |
79 | BAIK S, KIM S, LEE J, et al. Study on CO2-water printed circuit heat exchanger performance operating under various CO₂ phases for S-CO₂ power cycle application [J]. Applied Thermal Engineering, 2017, 113: 1536-1546. |
80 | ZHAO Z, ZHANG Y, CHEN X, et al. A numerical study on condensation flow and heat transfer of refrigerant in minichannels of printed circuit heat exchanger [J]. International Journal of Refrigeration, 2019, 102: 96-111. |
81 | LEE S, PARK B, CHUNG J. Numerical studies on thermal hydraulic performance of zigzag-type printed circuit heat exchanger with inserted straight channels [J]. Applied Thermal Engineering, 2017, 123:1434-1443. |
82 | TRI N L, KONSTANTIN N, YASUYOSHI K. Thermal-hydraulic performance of printed circuit heat exchanger in carbon dioxide gas turbine cycle [J]. Proceedings of Annual / Fall Meetings of Atomic Energy Society of Japan, 2005, 2005: 232. |
83 | ANEESH A M, SHARMA A, SRIVASTAVA A, et al. Effects of wavy channel configurations on thermal-hydraulic characteristics of printed circuit heat exchanger (PCHE) [J]. International Journal of Heat and Mass Transfer, 2018, 118: 304-315. |
84 | CUI X, GYO J, HUAI X, et al. Numerical investigations on serpentine channel for supercritical CO2 recuperator [J]. Energy, 2019,172(1):517-530. |
85 | KIM D E, KIM M H, CHA J E, et al. Numerical investigation on thermal hydraulic performance of new printed circuit heat exchanger model [J]. Nuclear Engineering and Design, 2008, 238(12): 3269-3276. |
86 | TSUZUKI T, KATO Y, ISHIZUKA T. High performance printed circuit heat exchanger [J]. Applied Thermal Engineering, 2007, 27(10): 1702-1707. |
87 | NGO T L, KATO Y, NIKITIN K, et al. New printed circuit heat exchanger with S-shaped fins for hot water supplier [J]. Experimental Thermal and Fluid Science, 2006, 30(8): 811-819. |
88 | CHEN F, ZHANG L, HUAI X, et al. Comprehensive performance comparison of airfoil fin PCHEs with NACA 00XX series airfoil [J]. Nuclear Engineering and Design, 2017, 315(4): 42-50. |
89 | KIM I H, ZHANG X, CHRISTENSEN R,et al. Design study and cost assessment of straight, zigzag, S-shape, and OSF PCHEs for a FLiNaK-SCO2 secondary heat exchanger in FHRs [J]. Annals of Nuclear Energy, 2016, 94: 129-137. |
90 | YOON S H, Cheon N H, KANG G B. Assessment of straight, zigzag, S-shape, and airfoil PCHEs for intermediate heat exchangers of HTGRs and SFRs [J]. Nuclear Engineering and Design, 2014, 270(4): 334-343. |
91 | LEE S M, KIM K Y. Thermal performance of a double-faced printed circuit heat exchanger with thin plates [J]. Journal of Thermophysics and Heat Transfer, 2014, 28(2): 251-257. |
92 | SON S, LEE Y, LEE J I. Development of an advanced printed circuit heat exchanger analysis code for realistic flow path configurations near header regions [J]. International Journal of Heat and Mass Transfer, 2015, 89(10): 242-250. |
93 | KIM W, BAIK Y J, JEON S, et al. A mathematical correlation for predicting the thermal performance of cross, parallel, and counterflow PCHEs [J]. International Journal of Heat and Mass Transfer, 2017, 106: 1294-1302. |
94 | KOO G W, LEE S M, KIM K Y. Shape optimization of inlet part of a PCHE [J]. The KSFM Journal of Fluid Machinery, 2013, 16(2): 35-41. |
95 | LEE S M, KOO G W, KIM K Y. Parametric study on hydraulic performance of an inlet plenum in a printed-circuit heat exchanger [J]. Science China Technological Sciences, 2013, 56(9): 2137-2142. |
96 | CHU W X, BENNETT K, CHENG J, et al. Numerical study on a novel hyperbolic inlet header in straight-channel printed circuit heat exchanger [J]. Applied Thermal Engineering, 2019, 146: 805-814. |
97 | BENNETT K, CHEN Y T. Printed circuit heat exchanger performance analysis using non-uniform segmental design method [J]. Applied Thermal Engineering, 2019, 153: 69-84. |
98 | KIM I H, NO H C, LEE J I,et al. Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations [J]. Nuclear Engineering and Design, 2009, 239(11): 2399-2408. |
99 | CHU W, LI X, MA T, et al. Heat transfer and pressure drop performance of printed circuit heat exchanger with different fin structures [J]. Chinese Science Bulletin, 2017, 62(16): 1788-1794. |
100 | LI X H, DENG T R, MA T, et al. A new evaluation method for overall heat transfer performance of supercritical carbon dioxide in a printed circuit heat exchanger [J]. Energy Conversion & Management, 2019,193: 99-105. |
101 | 戴金星, 秦胜飞, 胡国艺,等. 新中国天然气勘探开发70年来的重大进展[J]. 石油勘探与开发, 2019, 46(6): 1037-1047. |
DAI Jinxin, QIN Shengfei, HU Guoyi, et al. Major progress in the natural exploration and development in the past seven decades in China [J]. Petroleum Exploration and Development, 2019, 46(6): 1037-1047. | |
102 | 谢丽懿, 李智强, 丁国良. FLNG用印刷板路换热器技术特点及发展趋势[J]. 化工学报, 2019, 70(1): 4101-4112. |
XIE Liyi, LI Zhiqiang, DING Guoliagn. Technical characteristics and development trend of printed circuit heat exchanger for FLNG [J]. CIESC Journal, 2019, 70(1): 4101-4112. | |
103 | 赵璧, 宣益民. 航空发动机间冷器及回热器发展研究综述 [J]. 航空学报, 2017, 38(9): 6-26. |
ZHAO Bi, XUAN Yimin. A review of research on intercoolers and recuperators in aero-engines [J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 6-26. |
[1] | 赵珍珍, 郑喜, 王雪琪, 王涛, 冯英楠, 任永胜, 赵之平. 聚酰胺复合膜微孔支撑基底的研究进展[J]. 化工进展, 2023, 42(4): 1917-1933. |
[2] | 罗来明, 陈思安, 王海宁, 张劲, 卢善富, 相艳. 高温聚合物电解质膜燃料电池大尺寸(200cm2)多蛇形流场模拟与优化[J]. 化工进展, 2021, 40(9): 4975-4985. |
[3] | 滕建鑫, 杨春英, 贺征. 惯性分离装置的性能分析及结构优化[J]. 化工进展, 2019, 38(05): 2074-2084. |
[4] | 冯荣, 孟欣, 邓建平, 张鹏超. 冷却塔逆用吸热做热源塔技术研究现状[J]. 化工进展, 2018, 37(11): 4135-4142. |
[5] | 赵斌, 高明非, 杜亚杰, 霍殿龙. 固体碱渣解聚均质器结构试验与数值模拟[J]. 化工进展, 2018, 37(06): 2101-2108. |
[6] | 杨友麒. 化学工业的转型升级和过程系统工程(PSE)[J]. 化工进展, 2018, 37(03): 803-814. |
[7] | 陈梓晟, 张涛, 麦礼杰, 吴锦华, 胡成生, 韦朝海. 正方形流化床结构参数改变和内构件强化的数值模拟解析[J]. 化工进展, 2017, 36(06): 1997-2009. |
[8] | 徐烨琨1,2,刘成1,2,李永辉1,2. 折流杆换热器的研究方法进展[J]. 化工进展, 2014, 33(07): 1671-1676. |
[9] | 于洪锋1,李鑫钢1,2,李 洪1,2. 孔盘式液体分布器内液体流动对布液孔出流均匀性的影响[J]. 化工进展, 2013, 32(02): 276-282. |
[10] | 范 琦,尹 侠. 蜂窝夹套流动与换热的数值模拟及其结构优化 [J]. 化工进展, 2009, 28(1): 31-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |