1 |
WHITTINGHAM M S. Electrical energy storage and intercalation chemistry[J]. Science, 1976, 192(4244): 1126-1127.
|
2 |
MIZUSHIMA K, JONES P C, WISEMAN P J, et al. LixCoO2 (0<x≤1): a new cathode material for batteries of high energy density[J]. Materials Research Bulletin, 1980, 15(6): 783-789.
|
3 |
YOSHINO A, SANECHIKA K, NAKAJIMA T. Secondary battery: US5631100 A[P]. 1987.
|
4 |
黄可龙, 王兆翔, 刘素琴. 锂离子电池原理与关键技术[M]. 北京: 化学工业出版社, 2007.
|
|
HUANG Kelong, WANG Zhaoxiang, LIU Suqin. Lithium-ion battery and key technologies [M]. Beijing: Chemical Industry Press, 2007.
|
5 |
WEST K, JACOBSEN T, ATLUNG S. Modeling of porous insertion electrodes with liquid electrolyte[J]. Journal of the Electrochemical Society, 1982, 129(7): 1480-1485.
|
6 |
DOYLE M, FULLER T F, NEWMAN J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. Journal of the Electrochemical Society, 1993, 140(6): 1526-1533.
|
7 |
FULLER T F, DOYLE M, NEWMAN J. Simulation and optimization of the dual lithium ion insertion cell[J]. Journal of the Electrochemical Society, 1994, 141(1): 1-10.
|
9 |
冯毅. 锂离子电池数值模型研究[D]. 上海: 中国科学院研究生院上海微系统与信息技术研究所, 2008.
|
|
FENG Yi. Study of mathematical model for lithium-ion battery[D]. Shanghai: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 2008.
|
10 |
庄全超, 杨梓, 张蕾, 等. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
|
|
ZHUANG Quanchao, YANG Zi, ZHANG Lei, et al. Research progress on diagnosis of electrochemical impedance spectroscopy in lithium ion Batteries[J]. Progress in Chemistry, 2020, 32(6): 761-791.
|
11 |
VASILEIADIS A, DE KLERK N J J, SMITH R B, et al. Toward optimal performance and in-depth understanding of spinel Li4Ti5O12 electrodes through phase field modeling[J]. Advanced Functional Materials, 2018, 28(16): 1705992.
|
12 |
FRAGGEDAKIS D, NADKARNI N, GAO T, et al. A scaling law to determine phase morphologies during ion intercalation[J]. Energy & Environmental Science, 2020, 13(7): 2142-2152.
|
13 |
NADKARNI N, ZHOU T T, FRAGGEDAKIS D, et al. Modeling the metal-insulator phase transition in LixCoO2 for energy and information storage[J]. Advanced Functional Materials, 2019, 29(40): 1902821.
|
14 |
SMITH R B, KHOO E, BAZANT M Z. Intercalation kinetics in multiphase-layered materials[J]. The Journal of Physical Chemistry C, 2017, 121(23): 12505-12523.
|
15 |
HONG L, YANG K Q, TANG M. A mechanism of defect-enhanced phase transformation kinetics in lithium iron phosphate olivine[J]. Npj Computational Materials, 2019, 5: 118.
|
16 |
HONG L, LI L S, CHEN-WIEGART Y K, et al. Two-dimensional lithium diffusion behavior and probable hybrid phase transformation kinetics in olivine lithium iron phosphate[J]. Nature Communications, 2017, 8: 1194.
|
17 |
WANG F, TANG M. Thermodynamic origin of reaction non-uniformity in battery porous electrodes and its mitigation[J]. Journal of the Electrochemical Society, 2020, 167(12): 120543.
|
18 |
WANG F, TANG M. A quantitative analytical model for predicting and optimizing the rate performance of battery cells[J]. Cell Reports Physical Science, 2020, 1(9): 100192.
|
19 |
YANG Y, XU R, ZHANG K, et al. Quantification of heterogeneous degradation in Li-ion batteries[J]. Advanced Energy Materials, 2019, 9(25): 1900674.
|
20 |
LI Y Y, GABALY F E, FERGUSON T R, et al. Current-induced transition from particle-by-particle to concurrent intercalation in phase-separating battery electrodes[J]. Nature Materials, 2014, 13(12): 1149-1156.
|
21 |
JIANG Z S, LI J Z, YANG Y, et al. Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes[J]. Nature Communications, 2020, 11: 2310.
|
22 |
FLORES E, NOVÁK P, BERG E J. In situ and operando Raman spectroscopy of layered transition metal oxides for Li-ion battery cathodes[J]. Frontiers in Energy Research, 2018, 6: 82. DOI:10.3389/fenrg.2018.00082.
|
23 |
GILBERT J A, MARONI V A, CUI Y J, et al. Composition and impedance heterogeneity in oxide electrode cross-sections detected by Raman spectroscopy[J]. Advanced Materials Interfaces, 2018, 5(9): 1701447.
|
24 |
SETHURAMAN V A, HARDWICK L J, SRINIVASAN V, et al. Surface structural disordering in graphite upon lithium intercalation/deintercalation[J]. Journal of Power Sources, 2010, 195(11): 3655-3660.
|
25 |
CHA H, KIM J, LEE H, et al. Boosting reaction homogeneity in high-energy lithium-ion battery cathode materials[J]. Advanced Materials, 2020, 32(39): 2003040.
|
26 |
MILLER D J, ZAPOTOK D, ANZALONE P, et al. Exploring Li distribution in Li-ion batteries with FIB-SEM and TOF-SIMS[J]. Microscopy and Microanalysis, 2018, 24(S1): 370-371.
|
27 |
SHI T, ZHANG Y Q, TU Q S, et al. Characterization of mechanical degradation in an all-solid-state battery cathode[J]. Journal of Materials Chemistry A, 2020, 8(34): 17399-17404.
|
28 |
QUINN A, MOUTINHO H, USSEGLIO-VIRETTA F, et al. Electron backscatter diffraction for investigating lithium-ion electrode particle architectures[J]. Cell Reports Physical Science, 2020, 1(8): 100137.
|
29 |
ZHU X H, REVILLA R I, HUBIN A. Direct correlation between local surface potential measured by Kelvin probe force microscope and electrochemical potential of LiNi0.80Co0.15Al0.05O2 cathode at different state of charge[J]. The Journal of Physical Chemistry C, 2018, 122(50): 28556-28563.
|
30 |
KIM S H, KIM Y S, BAEK W J, et al. Nanoscale electrical resistance imaging of solid electrolyte interphases in lithium-ion battery anodes[J]. Journal of Power Sources, 2018, 407: 1-5.
|
31 |
KIM S H, KIM Y S, BAEK W J, et al. Nanoscale electrical degradation of silicon-carbon composite anode materials for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(29): 24549-24553.
|
8 |
DOYLE M, NEWMAN J. Analysis of capacity-rate data for lithium batteries using simplified models of the discharge process[J]. Journal of Applied Electrochemistry, 1997, 27(7): 846-856.
|