1 |
罗晓刚. 再生纤维素微球的制备、结构和功能[D]. 武汉: 武汉大学, 2010.
|
|
LUO Xiaogang. Preparation, structure and function of regenerated cellulose microspheres[D]. Wuhan: Wuhan University, 2010.
|
2 |
DUAN B, HUANG Y, LU A, et al. Recent advances in chitin based materials constructed via physical methods[J]. Progress in Polymer Science, 2018, 82: 1-33.
|
3 |
赵红, 徐晓敏, 徐建鸿, 等. 微流控制备壳聚糖功能材料研究进展[J]. 化工学报, 2016, 67(2): 373-378.
|
|
ZHAO Hong, XU Xiaomin, XU Jianhong, et al. Research progress in microfluidic preparation of chitosan functional materials[J]. CIESC Journal, 2016, 67(2): 373-378.
|
4 |
黄兰, 黄永东, 赵岚, 等. 复乳法制备大孔琼脂糖分离介质与疫苗结合性能研究[J]. 化学工业与工程, 2019, 36(4): 70-79.
|
|
HUANG Lan, HUANG Yongdong, ZHAO Lan, et al. Preparation of macroporous agarose-based chromatographic media using a double emulsification method and its binding with HBsAg[J]. Chemical Industry and Engineering, 2019, 36(4): 70-79.
|
5 |
KLEMM D, HEUBLEIN B, FINK H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005, 44(22): 3358-3393.
|
6 |
CAI J, ZHANG L, CHANG C, et al. Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature[J]. ChemPhysChem, 2007, 8(10): 1572-1579.
|
7 |
PRASAD K, MONDAL D, SHARMA M, et al. Stimuli responsive ion gels based on polysaccharides and other polymers prepared using ionic liquids and deep eutectic solvents[J]. Carbohydrate Polymers, 2018, 180: 328-336.
|
8 |
段博, 涂虎, 张俐娜. 可持续高分子-纤维素新材料研究进展[J]. 高分子学报, 2020, 51(1): 66-86.
|
|
DUAN Bo, TU Hu, ZHANG Lina. Material research progress of the sustainable polymer-cellulose[J]. Acta Polymerica Sinica, 2020, 51(1): 66-86.
|
9 |
GERICKE M, TRYGG J, FARDIM P. Functional cellulose beads: preparation, characterization, and applications[J]. Chemical Reviews, 2013, 113(7): 4812-4836.
|
10 |
WEI X Q, DUAN J J, XU X J, et al. Highly efficient one-step purification of sulfated polysaccharides via chitosan microspheres adsorbents[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(4): 3195-3203.
|
11 |
DUAN B, ZHENG X, XIA Z, et al. Highly biocompatible nanofibrous microspheres self-assembled from chitin in NaOH/urea aqueous solution as cell carriers[J]. Angewandte Chemie International Edition, 2015, 54(17): 5152-5156.
|
12 |
KAMAL MOHAMED S M, GANESAN K, MILOW B, et al. The effect of zinc oxide (ZnO) addition on the physical and morphological properties of cellulose aerogel beads[J]. RSC Advances, 2015, 5(109): 90193-90201.
|
13 |
SESCOUSSE R, GAVILLON R, BUDTOVA T. Wet and dry highly porous cellulose beads from cellulose-NaOH-water solutions: influence of the preparation conditions on beads shape and encapsulation of inorganic particles[J]. Journal of Materials Science, 2011, 46(3): 759-765.
|
14 |
LI C, HE M, TONG Z, et al. Construction of biocompatible regenerated cellulose/SPI composite beads using high-voltage electrostatic technique[J]. RSC Advances, 2016, 6(58): 52528-52538.
|
15 |
WORKMAN V L, TEZERA L B, ELKINGTON P T, et al. Controlled generation of microspheres incorporating extracellular matrix fibrils for three-dimensional cell culture[J]. Adv. Funct. Mater., 2014, 24(18): 2648-2657.
|
16 |
SHANG Y, DING F Y, XIAO L, et al. Chitin-based fast responsive pH sensitive microspheres for controlled drug release[J]. Carbohydrate Polymers, 2014, 102: 413-418.
|
17 |
DONG Z, XU H, BAI Z S, et al. Microfluidic synthesis of high-performance monodispersed chitosan microparticles for methyl orange adsorption[J]. RSC Advances, 2015, 5(95): 78352-78360.
|
18 |
WANG B J, ZHU Y, BAI Z S, et al. Functionalized chitosan biosorbents with ultra-high performance, mechanical strength and tunable selectivity for heavy metals in wastewater treatment[J]. Chemical Engineering Journal, 2017, 325: 350-359.
|
19 |
LUO X G, ZHANG L N. Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications[J]. Journal of Chromatography A, 2010, 1217(38): 5922-5929.
|
20 |
DENG C, LIU J, ZHOU W, et al. Fabrication of spherical cellulose/carbon tubes hybrid adsorbent anchored with welan gum polysaccharide and its potential in adsorbing methylene blue[J]. Chemical Engineering Journal, 2012, 200/201/202: 452-458.
|
21 |
DU K F, LIU X H, LI S K, et al. Synthesis of Cu2+ chelated cellulose/magnetic hydroxyapatite particles hybrid beads and their potential for high specific adsorption of histidine-rich proteins[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11578-11586.
|
22 |
ZHANG Q, DAN S M, DU K F. Fabrication and characterization of magnetic hydroxyapatite entrapped agarose composite beads with high adsorption capacity for heavy metal removal[J]. Industrial & Engineering Chemistry Research, 2017, 56(30): 8705-8712.
|
23 |
DU K F, YAN M, WANG Q Y, et al. Preparation and characterization of novel macroporous cellulose beads regenerated from ionic liquid for fast chromatography[J]. Journal of Chromatography A, 2010, 1217(8): 1298-1304.
|
24 |
LI X Q, LI Q, GONG F L, et al. Preparation of large-sized highly uniform agarose beads by novel rotating membrane emulsification[J]. Journal of Membrane Science, 2015, 476: 30-39.
|
25 |
DU K F, LI S K, ZHAO L S, et al. One-step growth of porous cellulose beads directly on bamboo fibers via oxidation-derived method in aqueous phase and their potential for heavy metal ions adsorption[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(12): 17068-17075.
|
26 |
QIAO L Z, ZHAO L S, DU K F. Construction of hierarchically porous chitin microspheres via a novel Dual-template strategy for rapid and high-capacity removal of heavy metal ions[J]. Chemical Engineering Journal, 2020, 393: 124818.
|
27 |
LIU J, YAN M, ZHANG Y K, et al. Study of glutamate-modified cellulose beads for Cr(Ⅲ) adsorption by response surface methodology[J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10784-10791.
|
28 |
LIU J, XIE T H, DENG C, et al. Welan gum-modified cellulose bead as an effective adsorbent of heavy metal ions (Pb2+, Cu2+, and Cd2+) in aqueous solution[J]. Separation Science and Technology, 2014, 49(7): 1096-1103.
|
29 |
NIE L, DUAN B, LU A, et al. Pd/TiO2@carbon microspheres derived from chitin for highly efficient photocatalytic degradation of volatile organic compounds[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1658-1666.
|
30 |
LIU Z, WANG H S, LI B, et al. Biocompatible magnetic cellulose-chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization[J]. Journal of Materials Chemistry, 2012, 22(30): 15085.
|
31 |
MORONI L, DE WIJN J R, BLITTERSWIJK C A VAN. Integrating novel technologies to fabricate smart scaffolds[J]. Journal of Biomaterials Science Polymer Edition, 2008, 19(5): 543-572.
|
32 |
HOLLISTER S J. Porous scaffold design for tissue engineering[J]. Nature Materials, 2005, 4(7): 518-524.
|
33 |
SU X, TAN M, DUAN B, et al. Hierarchical microspheres with macropores fabricated from chitin as 3D cell culture[J]. Journal of Materials Chemistry B, 2019, 7(34): 5190-5198.
|
34 |
BARKHORDARI S, YADOLLAHI M, NAMAZI H. pH Sensitive nanocomposite hydrogel beads based on carboxymethyl cellulose/layered double hydroxide as drug delivery systems[J]. Journal of Polymer Research, 2014, 21(6): 454.
|
35 |
TRYGG J, YILDIR E, KOLAKOVIC R, et al. Anionic cellulose beads for drug encapsulation and release[J]. Cellulose, 2014, 21(3): 1945-1955.
|
36 |
AGARWAL T, NARAYANA S N G H, PAL K, et al. Calcium alginate-carboxymethyl cellulose beads for colon-targeted drug delivery[J]. International Journal of Biological Macromolecules, 2015, 75: 409-417.
|
37 |
DUAN B, GAO X, YAO X, et al. Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors[J]. Nano Energy, 2016, 27: 482-491.
|
38 |
LIN T, CHEN I W, LIU F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513.
|
39 |
XU D F, CHEN C J, XIE J, et al. Electrode materials: a hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(6): 15019296.
|