化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2813-2826.DOI: 10.16085/j.issn.1000-6613.2020-1145
王旭(), 吴玉帅, 杨欣, 陈汇勇(), 张建波, 马晓迅
收稿日期:
2020-06-22
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
陈汇勇
作者简介:
王旭(1995—),男,硕士研究生,研究方向为分子筛吸附脱除VOCs。E-mail:基金资助:
WANG Xu(), WU Yushuai, YANG Xin, CHEN Huiyong(), ZHANG Jianbo, MA Xiaoxun
Received:
2020-06-22
Online:
2021-05-06
Published:
2021-05-24
Contact:
CHEN Huiyong
摘要:
挥发性有机化合物(volatile organic compounds,VOCs)作为空气中有机污染物的主要成分,对环境与人类健康造成了严重的危害。吸附法可有效富集低浓度VOCs气体,成本低、易操作,是末端治理去除VOCs的主要技术。沸石分子筛具有高度有序、孔径可调的微孔孔道,可实现VOCs分子的选择性吸附,且热稳定性极佳,易于脱附再生,是一种优良的VOCs气体吸附剂。本文分别从沸石分子筛的结构性质、复合型分子筛吸附剂以及整体式分子筛吸附剂三方面详细介绍了沸石分子筛用于VOCs吸附脱除的研究进展。结果表明,变换骨架拓扑结构以及补偿阳离子类型,可实现对VOCs分子进行选择性吸附;提高结构疏水性可有效降低高湿度条件下水分子对VOCs的竞争吸附,增强分子筛吸附剂的环境适应性;通过孔道多级化或与其他介/大孔构建复合型吸附剂,可提高分子筛吸附剂的比表面积和孔容,增大对VOCs的吸附容量;沸石分子筛可构建为整体式吸附剂,相较于颗粒型吸附剂,其机械强度更高,应用性更强。文章还指出,作为整体式分子筛吸附剂的典型代表,分子筛转轮吸附技术在高通量、高压降等吸附工况条件下均表现出极佳的VOCs吸附脱除效率,已广泛应用于工业排放VOCs的有效治理。
中图分类号:
王旭, 吴玉帅, 杨欣, 陈汇勇, 张建波, 马晓迅. 沸石分子筛用于VOCs吸附脱除的应用研究进展[J]. 化工进展, 2021, 40(5): 2813-2826.
WANG Xu, WU Yushuai, YANG Xin, CHEN Huiyong, ZHANG Jianbo, MA Xiaoxun. Review of adsorptive removal of volatile organic compounds by zeolite[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2813-2826.
骨架拓扑 | 多级孔分子筛 | Vmeso/Vtotal | HF | VOCs | 吸附容量/mg·g-1 | 吸附容量/mmol·g-1 | 吸附温度/K | 参考文献 | 年份/年 |
---|---|---|---|---|---|---|---|---|---|
DDR | ZSM-58 | 0.23 | 0.18 | 丙烯 | 62.8 | — | 298 | [ | 2018 |
DDR | ZSM-58 | 0.23 | 0.18 | 丙烷 | 19.5 | — | 298 | [ | 2018 |
CHA | H-SAPO-34 | 0.66 | 0.11 | 正丁烷 | 97 | — | 298 | [ | 2012 |
MFI | Na-ZSM-5 | 0.61 | 0.29 | 乙醛 | 1.92 | — | 298 | [ | 2011 |
MFI | Na-ZSM-5 | 0.67 | 0.13 | 正己烷 | 290 | — | 298 | [ | 2016 |
MFI | H-ZSM-5 | 0.57 | 0.08 | 苯 | — | 4.9 | 298 | [ | 2012 |
MFI | H-ZSM-5 | 0.57 | 0.08 | 环己烷 | — | 3.6 | 298 | [ | 2012 |
MFI | H-ZSM-5 | 0.57 | 0.08 | 异丙醇 | — | 6.7 | 298 | [ | 2012 |
MFI | Na-ZSM-5 | 0.73 | — | 甲苯 | 58 | — | 298 | [ | 2020 |
MFI | Si-ZSM-5 | 0.52 | — | 甲苯 | 44 | — | 298 | [ | 2020 |
MFI | H-ZSM-5 | 0.73 | 0.08 | 对二甲苯 | 172 | — | 333 | [ | 2020 |
BEA | Na-BETA | 0.70 | 0.11 | 正己烷 | 693 | — | 298 | [ | 2016 |
BEA | Na-BETA | 0.75 | 0.13 | 对二甲苯 | — | 1.4 | 308 | [ | 2015 |
BEA | Si-BETA | 0.39 | 0.18 | 丙酮 | — | 3.9 | 298 | [ | 2017 |
BEA | Si-BETA | 0.39 | 0.18 | 正己烷 | — | 2.4 | 298 | [ | 2017 |
BEA | Si-BETA | 0.39 | 0.18 | 苯 | — | 2.1 | 298 | [ | 2017 |
BEA | Si-BETA | 0.39 | 0.18 | 甲苯 | — | 1.8 | 298 | [ | 2017 |
FAU | Na-USY | 0.42 | 0.03 | 甲苯 | 268 | — | 298 | [ | 2019 |
FAU | H-USY | 0.43 | 0.06 | 甲苯 | 285 | — | 298 | [ | 2019 |
FAU | Na-Y | 0.39 | 0.07 | 甲苯 | 300 | — | 298 | [ | 2019 |
FAU | Na-X | 0.37 | 0.18 | 正己烷 | 219 | — | 298 | [ | 2016 |
表1 不同骨架拓扑的多级孔分子筛吸附VOCs性能对比
骨架拓扑 | 多级孔分子筛 | Vmeso/Vtotal | HF | VOCs | 吸附容量/mg·g-1 | 吸附容量/mmol·g-1 | 吸附温度/K | 参考文献 | 年份/年 |
---|---|---|---|---|---|---|---|---|---|
DDR | ZSM-58 | 0.23 | 0.18 | 丙烯 | 62.8 | — | 298 | [ | 2018 |
DDR | ZSM-58 | 0.23 | 0.18 | 丙烷 | 19.5 | — | 298 | [ | 2018 |
CHA | H-SAPO-34 | 0.66 | 0.11 | 正丁烷 | 97 | — | 298 | [ | 2012 |
MFI | Na-ZSM-5 | 0.61 | 0.29 | 乙醛 | 1.92 | — | 298 | [ | 2011 |
MFI | Na-ZSM-5 | 0.67 | 0.13 | 正己烷 | 290 | — | 298 | [ | 2016 |
MFI | H-ZSM-5 | 0.57 | 0.08 | 苯 | — | 4.9 | 298 | [ | 2012 |
MFI | H-ZSM-5 | 0.57 | 0.08 | 环己烷 | — | 3.6 | 298 | [ | 2012 |
MFI | H-ZSM-5 | 0.57 | 0.08 | 异丙醇 | — | 6.7 | 298 | [ | 2012 |
MFI | Na-ZSM-5 | 0.73 | — | 甲苯 | 58 | — | 298 | [ | 2020 |
MFI | Si-ZSM-5 | 0.52 | — | 甲苯 | 44 | — | 298 | [ | 2020 |
MFI | H-ZSM-5 | 0.73 | 0.08 | 对二甲苯 | 172 | — | 333 | [ | 2020 |
BEA | Na-BETA | 0.70 | 0.11 | 正己烷 | 693 | — | 298 | [ | 2016 |
BEA | Na-BETA | 0.75 | 0.13 | 对二甲苯 | — | 1.4 | 308 | [ | 2015 |
BEA | Si-BETA | 0.39 | 0.18 | 丙酮 | — | 3.9 | 298 | [ | 2017 |
BEA | Si-BETA | 0.39 | 0.18 | 正己烷 | — | 2.4 | 298 | [ | 2017 |
BEA | Si-BETA | 0.39 | 0.18 | 苯 | — | 2.1 | 298 | [ | 2017 |
BEA | Si-BETA | 0.39 | 0.18 | 甲苯 | — | 1.8 | 298 | [ | 2017 |
FAU | Na-USY | 0.42 | 0.03 | 甲苯 | 268 | — | 298 | [ | 2019 |
FAU | H-USY | 0.43 | 0.06 | 甲苯 | 285 | — | 298 | [ | 2019 |
FAU | Na-Y | 0.39 | 0.07 | 甲苯 | 300 | — | 298 | [ | 2019 |
FAU | Na-X | 0.37 | 0.18 | 正己烷 | 219 | — | 298 | [ | 2016 |
地区及厂家 | VOCs | VOCs去除率/% |
---|---|---|
唐山某工厂涂装车间 | 异丙醇、环己酮、乙酸乙酯 | 90 |
天津某工厂涂装车间 | 丙酮、苯乙烯、甲苯、异丙醇 | 96 |
广州某汽车工厂涂装车间 | 邻间二甲苯、丙酮、苯乙烯、环己酮 | 90 |
青岛某机车喷漆车间 | 乙酸乙酯、二甲苯 | 90 |
上海某所半导体厂 | 甲苯、邻二甲苯、丙酮、苯乙烯 | 95 |
东莞某模具UV漆废气 | 二甲苯、醋酸丁酯、丙酮 | 90 |
河南某家具厂喷漆 | 乙酸乙酯、苯、甲苯 | 90 |
浙江某橡胶集团 | 苯乙烯 | 90 |
江苏某橡塑印刷废气 | 丙酮 | 90 |
表2 分子筛吸附转轮技术用于工业排放VOCs治理的应用案例
地区及厂家 | VOCs | VOCs去除率/% |
---|---|---|
唐山某工厂涂装车间 | 异丙醇、环己酮、乙酸乙酯 | 90 |
天津某工厂涂装车间 | 丙酮、苯乙烯、甲苯、异丙醇 | 96 |
广州某汽车工厂涂装车间 | 邻间二甲苯、丙酮、苯乙烯、环己酮 | 90 |
青岛某机车喷漆车间 | 乙酸乙酯、二甲苯 | 90 |
上海某所半导体厂 | 甲苯、邻二甲苯、丙酮、苯乙烯 | 95 |
东莞某模具UV漆废气 | 二甲苯、醋酸丁酯、丙酮 | 90 |
河南某家具厂喷漆 | 乙酸乙酯、苯、甲苯 | 90 |
浙江某橡胶集团 | 苯乙烯 | 90 |
江苏某橡塑印刷废气 | 丙酮 | 90 |
1 | 李长英, 陈明功, 盛楠, 等. 挥发性有机物处理技术的特点与发展[J]. 化工进展, 2016, 35(3): 917-925. |
LI Changying, CHEN Minggong, SHENG Nan, et al. The characteristics and development of volatile organic compounds treatment technology[J]. Chemical Industry and Engineering Progress, 2016, 35(3): 917-925. | |
2 | KRISHNAMURTHY Anirudh, ADEBAYO Busuyi, GELLES Teresa, et al. Abatement of gaseous volatile organic compounds: a process perspective[J]. Catalysis Today, 2020, 350: 100-119. |
3 | GELLES Teresa, KRISHNAMURTHY Anirudh, ADEBAYO Busuyi, et al. Abatement of gaseous volatile organic compounds: a material perspective[J]. Catalysis Today, 2020, 350: 3-18. |
4 | ZHANG Renyi, WANG Gehui, GUO Song, et al. Formation of urban fine particulate matter[J]. Chemical Reviews, 2015, 115(10): 3803-3855. |
5 | MOON Hyung Suk, KIM In Soo, KANG Sin Jae, et al. Adsorption of volatile organic compounds using activated carbon fiber filter in the automobiles[J]. Carbon Lett., 2014, 15(3): 203-209. |
6 | DI Jiangtao, HU Dongmei, CHEN Hongyuan, et al. Ultrastrong, foldable, and highly conductive carbon nanotube film[J]. ACS Nano, 2012, 6(6): 5457-5464. |
7 | HUANG Haibao, XU Ying, FENG Qiuyu, et al. Low temperature catalytic oxidation of volatile organic compounds: a review[J]. Catalysis Science & Technology, 2015, 5(5): 2649-2669. |
8 | Salvatore SCIRÈ, LIOTTA Leonarda Francesca. Supported gold catalysts for the total oxidation of volatile organic compounds[J]. Applied Catalysis B: Environmental, 2012, 125: 222-246. |
9 | David COOPER C, CLAUSEN Christian A, TOMLIN Doug,et al. Enhancement of organic vapor incineration using hydrogen peroxide[J]. Journal of Hazardous Materials, 1991, 27(3): 273-285. |
10 | DELAGRANGE Sophie, PINARD Ludovic, TATIBOUET Jean-Michel. Combination of a non-thermal plasma and a catalyst for toluene removal from air: manganese based oxide catalysts[J]. Applied Catalysis B: Environmental, 2006, 68(3/4): 92-98. |
11 | MCCULLAGH Cathy, SKILLEN Nathan, ADAMS Morgan, et al. Photocatalytic reactors for environmental remediation: a review[J]. Journal of Chemical Technology & Biotechnology, 2011, 86(8): 1002-1017. |
12 | 许伟, 刘军利, 孙康. 活性炭吸附法在挥发性有机物治理中的应用研究进展[J]. 化工进展, 2016, 35(4): 1223-1229. |
XU Wei, LIU Junli, SUN Kang. Application progresses in the treatment of volatile organic compounds by adsorption on activated carbon[J]. Chemical Industry and Engineering Progress, 2016, 35(4): 1223-1229. | |
13 | TWUMASI Ebenezer, FORSLUND Mikael, NORBERG Peter, et al. Carbon-silica composites prepared by the precipitation method. Effect of the synthesis parameters on textural characteristics and toluene dynamic adsorption[J]. Journal of Porous Materials, 2012, 19(3): 333-343. |
14 | RAKIC V, RAC V, KRMAR M, et al. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons[J]. Journal of Hazardous Materials, 2015, 282: 141-149. |
15 | BAUR Guillaume B, BESWICK Oliver, SPRING Jonathan, et al. Activated carbon fibers for efficient VOC removal from diluted streams: the role of surface functionalities[J]. Adsorption, 2015, 21(4): 255-264. |
16 | LIU Dong, YUAN Peng, TAN Daoyong, et al. Effects of inherent/enhanced solid acidity and morphology of diatomite templates on the synthesis and porosity of hierarchically porous carbon[J]. Langmuir, 2010, 26(24): 18624-18627. |
17 | DOU Baojuan, HU Qin, LI Jinjun, et al. Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1615-1624. |
18 | 李小娟, 何长发, 黄斌, 等. 金属有机骨架材料吸附去除环境污染物的进展[J]. 化工进展, 2016, 35(2): 586-594. |
LI Xiaojuan, HE Changfa, HUANG Bin, et al. Progress in the applications of metal-organic frameworks in adsorption removal of hazardous materials[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 586-594. | |
19 | 李立博, 王勇, 王小青, 等. 柔性金属有机骨架材料(MOFs)用于气体吸附分离[J]. 化工进展, 2016, 35(6): 1794-1803. |
LI Libo, WANG Yong, WANG Xiaoqing, et al. Selective gas adsorption and separation in flexible metal-organic frameworks[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1794-1803. | |
20 | WANG Hao, LI Jing. Microporous metal-organic frameworks for adsorptive separation of C5-C6 alkane isomers[J]. Accounts of chemical research, 2019, 52(7): 1968-1978. |
21 | KIM Ki-Joong, Ho-Geun AHN. The effect of pore structure of zeolite on the adsorption of VOCs and their desorption properties by microwave heating[J]. Microporous and Mesoporous Materials, 2012, 152: 78-83. |
22 | YOUSEF Rushdi I, Bassam El-ESWED, Al-MUHTASEB Ala’a H. Adsorption characteristics of natural zeolites as solid adsorbents for phenol removal from aqueous solutions: kinetics, mechanism, and thermodynamics studies[J]. Chemical Engineering Journal, 2011, 171(3): 1143-1149. |
23 | ILIC Boris, WETTSTEIN Stephanie G. A review of adsorbate and temperature-induced zeolite framework flexibility[J]. Microporous and Mesoporous Materials, 2017, 239: 221-234. |
24 | BRODU Nicolas, SOCHARD Sabine, ANDRIANTSIFERANA Caroline, et al. Fixed-bed adsorption of toluene on high silica zeolites: experiments and mathematical modelling using LDF approximation and a multisite model[J]. Environmental Technology, 2015, 36(14): 1807-1818. |
25 | 岳旭, 王胜, 刘旭, 等. 不同吸附剂上动态吸附-脱附挥发性有机气体性能研究[J]. 燃料化学学报, 2020, 48(1): 120-128. |
YUE Xu, WANG Sheng, LIU Xu, et al. Dynamic adsorption and desorption of volatile organic compounds on different adsorbents[J]. Journal of Fuel Chemistry and Technology, 2020, 48(1): 120-128. | |
26 | COSSERON A F, DAOU T J, TZANIS L, et al. Adsorption of volatile organic compounds in pure silica CHA,*BEA, MFI and STT-type zeolites[J]. Microporous and Mesoporous Materials, 2013, 173: 147-154. |
27 | CALERO S, GÓMEZ-ÁLVAREZ P. On the performance of FAU and MFI zeolites for the adsorptive removal of a series of volatile organic compounds from air using molecular simulation[J]. Physical Chemistry Chemical Physics, 2015, 17(39): 26451-26455. |
28 | NIGAR H, NAVASCUÉS N, DE LA IGLESIA O, et al. Removal of VOCs at trace concentration levels from humid air by microwave swing adsorption, kinetics and proper sorbent selection[J]. Separation and Purification Technology, 2015, 151: 193-200. |
29 | GUILLEMOT Marianne, MIJOIN Jérôme, MIGNARD Samuel, et al. Adsorption of tetrachloroethylene on cationic X and Y zeolites: influence of cation nature and of water vapor[J]. Industrial & Engineering Chemistry Research, 2007, 46(13): 4614-4620. |
30 | BEERDSEN Edith, SMIT Berend, CALERO Sofía. The influence of non-framework sodium cations on the adsorption of alkanes in MFI-and MOR-type zeolites[J]. The Journal of Physical Chemistry B, 2002, 106(41): 10659-10667. |
31 | ZENG Yongping, JU Shengui. Adsorption of thiophene and benzene in sodium-exchanged MFI-and MOR-type zeolites: a molecular simulation study[J]. Separation and Purification Technology, 2009, 67(1): 71-78. |
32 | DAI Jiqiang, ZHAO Cheng, HU Xiaomei, et al. One-pot synthesis of meso-microporous ZSM-5 and their excellent performance in VOCs adsorption/desorption[J]. Journal of Chemical Technology & Biotechnology, 2021, 96(1): 78-87. |
33 | KABALAN Ihab, LEBEAU Benedicte, NOUALI Habiba, et al. New generation of zeolite materials for environmental applications[J]. The Journal of Physical Chemistry C, 2016, 120(5): 2688-2697. |
34 | XU Dandan, SWINDLEHURST Garrett R, WU Haohan, et al. On the synthesis and adsorption properties of single-unit-cell hierarchical zeolites made by rotational intergrowths[J]. Advanced Functional Materials, 2014, 24(2): 201-208. |
35 | ZHANG Ling, PENG Yuexin, ZHANG Juan, et al. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials[J]. Chinese Journal of Catalysis, 2016, 37(6): 800-809. |
36 | 冯爱虎, 于洋, 于云, 等. 沸石分子筛及其负载型催化剂去除VOCs研究进展[J]. 化学学报, 2018, 76(10): 757-773. |
FENG Aihu, YU Yang, YU Yun, et al. Recent progress in the removal of volatile organic compounds by zeolite and its supported catalysts[J]. Acta Chimica Sinica, 2018, 76(10): 757-773. | |
37 | SELZER Carolin, WERNER Anjia, KASKEL Stenfan. Selective adsorption of propene over propane on hierarchical zeolite ZSM-58[J]. Industrial & Engineering Chemistry Research, 2018, 57(19): 6609-6617. |
38 | LI Chao, REN Yanqun, GOU Jinsheng, et al. Facile synthesis of mesostructured ZSM-5 zeolite with enhanced mass transport and catalytic performances[J]. Applied Surface Science, 2017, 392: 785-794. |
39 | KIM Nam Sun, NUMAN Muhammad, Sung Chan NAM, et al. Dynamic adsorption/desorption of p-xylene on nanomorphic MFI zeolites: effect of zeolite crystal thickness and mesopore architecture[J]. Journal of Hazardous Materials, 2021, 403: 123659. |
40 | FENG Aihu, YU Yang, MI Le, et al. Synthesis and characterization of hierarchical Y zeolites using NH4HF2 as dealumination agent[J]. Microporous and Mesoporous Materials, 2019, 280: 211-218. |
41 | FENG Aihu, YU Yang, MI Le, et al. Structural, textural and toluene adsorption properties of NH4HF2 and alkali modified USY zeolite[J]. Microporous and Mesoporous Materials, 2019, 290: 109646. |
42 | SCHMIDT Franz, PAASCH Silvia, BRUNNER Eike, et al. Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction[J]. Microporous and Mesoporous Materials, 2012, 164: 214-221. |
43 | YOON Suk Bon, KIM Jong-Yun, PARK Seung-Kyu K, et al. In situ recrystallization of silica template for synthesis of novel microporous ZSM-5/hollow mesoporous carbon composites[J]. Industrial & Engineering Chemistry Research, 2011, 50(13): 7998-8005. |
44 | MICHELS Nina-Luisa, MITCHELL Sharon, MILINA Maria, et al. Hierarchically structured zeolite bodies: assembling micro-, meso-, and macroporosity levels in complex materials with enhanced properties[J]. Advanced Functional Materials, 2012, 22(12): 2509-2518. |
45 | HUANG Shushu, DENG Wei, ZHANG Long, et al. Adsorptive properties in toluene removal over hierarchical zeolites[J]. Microporous and Mesoporous Materials, 2020,302: 110204. |
46 | SONG Aixia, MA Jinghong, XU Duo, et al. Adsorption and diffusion of xylene isomers on mesoporous beta zeolite[J]. Catalysts, 2015, 5(4): 2098-2114. |
47 | ZHU Zhiguo, XU Hao, JIANG Jingang, et al. Hydrophobic nanosized all-silica beta zeolite: efficient synthesis and adsorption application[J]. ACS Applied Materials & Interfaces, 2017, 9(32): 27273-27283. |
48 | KABALAN I, LEBEAU B, FADLALLAH M B, et al. Hierarchical faujasite-type zeolite for molecular decontamination[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(9): 9318-9322. |
49 | MA Ye, WU Qinming, XIE Yiquan, et al. Recent advances in organotemplate-free synthesis of zeolites[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 25: 100363. |
50 | LI Yi, LI Lin, YU Jihong. Applications of zeolites in sustainable chemistry[J]. Chem., 2017, 3(6): 928-949. |
51 | LIU Bo, ZHOU Rongfei, YOGO Katsunori, et al. Preparation of CHA zeolite (chabazite) crystals and membranes without organic structural directing agents for CO2 separation[J]. Journal of Membrane Science, 2019, 573: 333-343. |
52 | GAO Kai, WANG Qing, DU Xuexun, et al. Efficient adsorption and eco-environmental oxidization of dimethylamine in Beta zeolite[J]. Microporous and Mesoporous Materials, 2019, 282: 219-227. |
53 | WANG Yeqing, DUAN Hongchang, TAN Zhengguo, et al. Illuminating solvent-free synthesis of zeolites[J]. Dalton Transactions, 2020, 49(21): 6939-6944. |
54 | WU Qinming, MA Ye, WANG Sai, et al. 110th anniversary: sustainable synthesis of zeolites: from fundamental research to industrial production[J]. Industrial & Engineering Chemistry Research, 2019, 58(27): 11653-11658. |
55 | BHATIA Subhash, ABDULLAH Ahmad Zuhairi, WONG Cheng Teng. Adsorption of butyl acetate in air over silver-loaded Y and ZSM-5 zeolites: experimental and modelling studies[J]. Journal of Hazardous Materials, 2009, 163(1): 73-81. |
56 | YIN Tao, MENG Xuan, JIN Linpeng, et al. Prepared hydrophobic Y zeolite for adsorbing toluene in humid environment[J]. Microporous and Mesoporous Materials, 2020, 305: 110327. |
57 | BAL’ZHINIMAEV Bair S, PAUKSHTIS Eugenii A, TOKTAREV Alexander V, et al. Effect of water on toluene adsorption over high silica zeolites[J]. Microporous and Mesoporous Materials, 2019, 277: 70-77. |
58 | GÖKTUĞ AHUNBAY M, Oğuz KARVAN, Ayşe ERDEM-ŞENATALAR. MTBE adsorption and diffusion in silicalite-1[J]. Microporous and Mesoporous Materials, 2008, 115(1/2): 93-97. |
59 | Eren GÜVENÇ, AHUNBAY M. Göktuğ. Adsorption of methyl tertiary butyl ether and trichloroethylene in MFI-type zeolites[J]. The Journal of Physical Chemistry C, 2012, 116(41): 21836-21843. |
60 | HU Qin, LI Jinjun, QIAO Shizhang, et al. Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials[J]. Journal of Hazardous Materials, 2009, 164(2/3): 1205-1212. |
61 | WANG Shuang, BAI Pu, WEI Yingzhen, et al. Three-dimensional-printed core-shell structured MFI-type zeolite monoliths for volatile organic compound capture under humid conditions[J]. ACS Applied Materials & Interfaces, 2019, 11(42): 38955-38963. |
62 | HAN Xiaolong, WANG Lei, LI Jiding, et al. Tuning the hydrophobicity of ZSM-5 zeolites by surface silanization using alkyltrichlorosilane[J]. Applied Surface Science, 2011, 257(22): 9525-9531. |
63 | 张媛媛, 王笠力, 何丽, 等. 分子筛改性及其在高湿条件下对甲苯的吸附[J]. 环境工程学报, 2017, 11(10): 5509-5514. |
ZHANG Yuanyuan, WANG Lili, HE Li, et al. Modification of zeolite and adsorption of toluene under high humidity condition[J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5509-5514. | |
64 | IVANOVA Irina I, KNYAZEVA Elena E. Micro-mesoporous materials obtained by zeoliterecrystallization: synthesis, characterization and catalytic applications[J]. Chemical Society Reviews, 2013, 42(9): 3671-3688. |
65 | LI Renna, CHONG Shijia, ALTAF Naveed, et al. Synthesis of ZSM-5/siliceous zeolite composites for improvement of hydrophobic adsorption of volatile organic compounds[J]. Frontiers in Chemistry, 2019, 7: 505. |
66 | DEVRIESE L I, COOLS L, AERTS A, et al. Shape selectivity in adsorption of n- and iso-alkanes on a zeotile-2 microporous/mesoporous hybrid and mesoporous MCM-48[J]. Advanced Functional Materials, 2007, 17(18): 3911-3917. |
67 | LI Renna, XUE Tianshan, LI Zhe, et al. Hierarchical structure ZSM-5/SBA-15 composite with improved hydrophobicity for adsorption-desorption behavior of toluene[J]. Chemical Engineering Journal, 2020, 392: 124861. |
68 | YU Wenbin, DENG Liangliang, YUAN Peng, et al. Preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance for benzene adsorption: the effects of desilication[J]. Chemical Engineering Journal, 2015, 270: 450-458. |
69 | YU Wenbin, YUAN Peng, LIU Dong, et al. Facile preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance of benzene adsorption: the effects of NaOH etching pretreatment[J]. Journal of Hazardous Materials, 2015, 285: 173-181. |
70 | YUAN Weiwei, YUAN Peng, LIU Dong, et al. A hierarchically porous diatomite/silicalite-1 composite for benzene adsorption/desorption fabricated via a facile pre-modification in situ synthesis route[J]. Chemical Engineering Journal, 2016, 294: 333-342. |
71 | AKHTAR Farid, ANDERSSON Linnéa, OGUNWUMI Steven, et al. Structuring adsorbents and catalysts by processing of porous powders[J]. Journal of the European Ceramic Society, 2014, 34(7): 1643-1666. |
72 | SHAMS K, MIRMOHAMMADI S J. Preparation of 5A zeolite monolith granular extrudates using kaolin: investigation of the effect of binder on sieving/adsorption properties using a mixture of linear and branched paraffin hydrocarbons[J]. Microporous and Mesoporous Materials, 2007, 106(1/2/3): 268-277. |
73 | BESSER Benjamin, TAJIRI Henrique Akira, MIKOLAJCZYK Gerd, et al. Hierarchical porous zeolite structures for pressure swing adsorption applications[J]. ACS Applied Materials & Interfaces, 2016, 8(5): 3277-3286. |
74 | KOPAYGORODSKY E M, GULIANTS V V, KRANTZ W B. Predictive dynamic model of single-stage ultra-rapid pressure swing adsorption[J]. AIChE Journal, 2004, 50(5): 953-962. |
75 | MEILLE Valérie. Review on methods to deposit catalysts on structured surfaces[J]. Applied Catalysis A: General, 2006, 315: 1-17. |
76 | YASUMORI Atsuo, YANAGIDA Sayaka, SAWADA Jun. Preparation of a titania/X-zeolite/porous glass composite photocatalyst using hydrothermal and drop coating processes[J]. Molecules, 2015, 20(2): 2349-2363. |
77 | 薛梦婷. NaY分子筛吸附剂的制备及其对挥发性有机物的吸附效果研究[D]. 苏州: 苏州科技大学, 2019. |
XUE Mengting. Preparation of NaY zeolite adsorbent and its adsorption effect on volatile organic compounds[D]. Suzhou:Suzhou University of Science and Technology, 2019. | |
78 | YUAN Weiwei, YUAN Peng, LIU Dong, et al. Novel hierarchically porous nanocomposites of diatomite-based ceramic monoliths coated with silicalite-1 nanoparticles for benzene adsorption[J]. Microporous and Mesoporous Materials, 2015, 206: 184-193. |
79 | FU Huangxi, YANG Qirong, ZHANG Lizhi. Effects of material properties on heat and mass transfer in honeycomb-type adsorbent wheels for total heat recovery[J]. Applied Thermal Engineering, 2017, 118: 345-356. |
80 | Minwhee CHO, KIM Jongjin, JEONG Jeongmin, et al. Excellent toluene removal via adsorption by honeycomb adsorbents under high temperature and humidity conditions[J]. Environmental Engineering Research, 2020, 25(2): 171-177. |
81 | YAMAUCHI Hisashi, KODAMA Akio, HIROSE Tsutomu, et al. Performance of VOC abatement by thermal swing honeycomb rotor adsorbers[J]. Industrial & Engineering Chemistry Research, 2007, 46(12): 4316-4322. |
82 | YANG Ji, CHEN Yufeng, CAO Limei, et al. Development and field-scale optimization of a honeycomb zeolite rotor concentrator/recuperative oxidizer for the abatement of volatile organic carbons from semiconductor industry[J]. Environmental Science & Technology, 2012, 46(1): 441-446. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[5] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[6] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[7] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[8] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[9] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[10] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[11] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[12] | 王晓晗, 周亚松, 于志庆, 魏强, 孙劲晓, 姜鹏. 不同晶粒尺寸Y分子筛的合成及其加氢裂化反应性能[J]. 化工进展, 2023, 42(8): 4283-4295. |
[13] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[14] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[15] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |