化工进展 ›› 2021, Vol. 40 ›› Issue (4): 1812-1826.DOI: 10.16085/j.issn.1000-6613.2020-0830
收稿日期:
2020-05-15
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
曹学文
作者简介:
边江(1992—),男,博士研究生,主要从事天然气处理与加工技术等方面的研究工作。E-mail:基金资助:
BIAN Jiang(), CAO Xuewen(), SUN Wenjuan, YANG Wen, JIANG Wenming
Received:
2020-05-15
Online:
2021-04-05
Published:
2021-04-14
Contact:
CAO Xuewen
摘要:
超声速旋流分离技术是天然气加工处理领域的一大技术创新,它将膨胀降温、旋流式气/液分离、再压缩等处理过程集中在密闭紧凑装置中完成。本文总结了超声速旋流分离装置种类、原理及优缺点,并从理论分析、数值模拟、实验和现场应用等方面回顾了易凝气体低温凝结理论和超声速旋流分离技术研究现状和最新进展。大量实验及现场应用均表明超声速旋流分离装置具有结构紧凑轻巧、节能环保、安全可靠等优点,同时该技术的应用不断趋于多元化,从传统的脱水、脱重烃逐渐向脱酸气和天然气液化领域拓展,应用前景广阔,但在应用过程中也存在液滴二次蒸发与能量损失较大等问题。下一步研究工作可以从多组分混合物凝结过程的交互作用机制、凝结液滴的运动特性和碰撞聚并机理等方面入手,在此基础上探索提高凝结效率和降低能量损耗的方法,以促进超声速旋流分离技术多元化的工业应用。
中图分类号:
边江, 曹学文, 孙文娟, 杨文, 蒋文明. 气体超声速凝结与旋流分离研究进展[J]. 化工进展, 2021, 40(4): 1812-1826.
BIAN Jiang, CAO Xuewen, SUN Wenjuan, YANG Wen, JIANG Wenming. A review on condensation and swirl separation of supersonic gas[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1812-1826.
图6 凝结参数光学测试系统测量原理[18]
null1 | FARAMAWY S, ZAKI T, SAKR A A E. Natural gas origin, composition, and processing: a review[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 34-54. |
2 | GARRETT R L, OEHLSCHLAGER W K, TOMICH J F. Vapor-liquid separation at supersonic velocities[J]. Journal of Engineering for Industry, 1968, 90(4): 609. |
3 | KONTT T. Supersonic twister chills out[J]. Offshore Engineer, 2000, 25(7): 2-3. |
4 | HAGHIGHI M, HAWBOLDT K A, ABDI M A. Supersonic gas separators: review of latest developments[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 109-121. |
5 | 韩中合, 赵豫晋, 肖坤玉, 等. 新型超音速旋流分离器流场分析与性能评估[J]. 化工进展, 2016, 35(9): 2715-2720. |
HAN Z H, ZHAO Y J, XIAO K Y, et al. Flow field analysis and performance evaluation on new supersonic swirling separator[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2715-2720. | |
6 | OKIMOTO F T, BROUWER J M. Supersonic gas conditioning[J]. World Oil, 2002, 223(8): 89-91. |
7 | ALFYOROV V I, BAGIROV L A, DMITRIEV L, et al. Supersonic nozzle efficiently separates natural gas components[J]. Oil Gas Journal, 2005, 103(20): 53-58. |
8 | SCHINKELSHOEK P, EPSOM H. Supersonic gas conditioning-low pressure drop TWISTER™ for NGL recovery[C]//The 2006 Offshore Technology Conference, Houston, 2006. |
9 | VOLMER M, WEBER A. Nuclei formation in supersaturated states[J]. Zeitschrift fur Physikalische Chemie, 1926, 119: 277-301. |
10 | BECKER R, DÖRING W. The kinetic treatment of nuclear formation in supersaturated vapors[J]. Annals of Physics, 1935, 24: 719-752. |
11 | ZELDOVICH Y B. Theory of the formation of a new phase cavitations[J]. Journal of Experimental and Theoretical Physics, 1942, 12: 525-526. |
12 | LOTHE J, POUND G M. Reconsiderations of nucleation theory[J]. The Journal of Chemical Physics, 1962, 36(8): 2080-2085. |
13 | REISS H, KATZ J L, COHEN E R. Translation-rotation paradox in the theory of nucleation[J]. The Journal of Chemical Physics, 1968, 48(12): 5553-5560. |
14 | REISS H. Treatment of droplike clusters by means of the classical phase integral in nucleation theory[J]. Journal of Statistical Physics, 1970, 2(1): 83-104. |
15 | RUTH V, HIRTH J P, POUND G M. On the theory of homogeneous nucleation and spinodal decomposition in condensation from the vapor phase[J]. The Journal of Chemical Physics, 1988, 88: 7079-7087. |
16 | GIRSHICK S L, CHIU C P. Kinetic nucleation theory: a new expression for the rate of homogeneous nucleation from an ideal supersaturated vapor[J]. The Journal of Chemical Physics, 1990, 93(2): 1273-1277. |
17 | GIRSHICK S L. Comment on: self-consistency correction to homogeneous nucleation theory[J]. The Journal of Chemical Physics, 1991, 94(1): 826-827. |
18 | LAMANNA G. On nucleation and droplet growth in condensing nozzle flows[D]. Netherlands: Eindhoven University of Technology, 2000. |
19 | DILLMANN A, MEIER G E A. Homogeneous nucleation of supersaturated vapors[J]. Chemical Physics Letters, 1989, 160(1): 71-74. |
20 | DILLMANN A, MEIER G E A. A refined droplet approach to the problem of homogeneous nucleation from the vapor phase[J]. The Journal of Chemical Physics, 1991, 94(5): 3872-3884. |
21 | FORD I J, LAAKSONEN A, KULMALA M. Modification of the Dillmann—Meier theory of homogeneous nucleation[J]. The Journal of Chemical Physics, 1993, 99: 764-765. |
22 | LAAKSONEN A, FORD I J, KULMALA M. Revised parametrization of the Dillmann-Meier theory of homogeneous nucleation[J]. Physical Review E, 1994, 49(6): 5517-5524. |
23 | KALIKMANOV V I, DONGEN M E H VAN. Cluster approach to the kinetic theory of homogeneous nucleation[J]. Europhysics Letters, 1993, 21(6): 645-650. |
24 | KALIKMANOV V I, DONGEN M E H VAN. Self-consistent cluster approach to the homogeneous kinetic nucleation theory[J]. Physical Review E, 1993, 47(5): 3532-3539. |
25 | KANTROWITZ A. Nucleation in very rapid vapor expansions[J]. The Journal of Chemical Physics, 1951, 19(9): 1097-1100. |
26 | 刘恒伟, 刘中良, 冯永训, 等. 过饱和状态下临界液滴半径公式及分析[J]. 热能动力工程, 2005, 20(3): 255-257, 274. |
LIU H W, LIU Z L, FENG Y X, et al. Derivation of a formula for calculating the critical radius of a spherical liquid droplet and its analysis[J]. Journal of Engineering for Thermal Energy and Power, 2005, 20(3): 255-257, 274. | |
27 | 杨文, 侯志强, 陈鹏, 等. 双组分气体自发凝结成核模型修正[J]. 石油学报(石油加工), 2017, 33(2):273-280. |
YANG W, HOU Z Q, CHEN P, et al. Modification of models for binary component vapor spontaneous nucleation[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2017, 33(2): 273-280. | |
28 | 张国杰. 基于修正模型的非平衡凝结流动数值研究[D]. 徐州: 中国矿业大学, 2018. |
ZHANG G J. Numerical study of non-equilibrium condensing flow based on the modified model[D]. Xuzhou: China University of Mining and Technology, 2018. | |
29 | OSWATITSCH K. Kondensationserscheinungen in überschalldüsen[J]. Zeitschrift für Angewandte Mathematik und Mechanik, 1942, 22(1): 1-14. |
30 | GYARMATHY G. Grundlagen einer theorie der nassdampfturbine[D]. Zürich: Eidgenoessische Technische Hochschule Zuerich, 1962. |
31 | GYARMATHY G. The spherical droplet in gaseous carrier streams: review and synthesis[J]. Multiphase Science and Technology, 1982, 1(4): 99-279. |
32 | YOUNG J B. The condensation and evaporation of liquid droplets in a pure vapour at arbitrary Knudsen number[J]. International Journal of Heat and Mass Transfer, 1991, 34(7): 1649-1661. |
33 | YOUNG J B. The condensation and evaporation of liquid droplets at arbitrary Knudsen number in the presence of an inert gas[J]. International Journal of Heat and Mass Transfer, 1993, 36(11): 2941-2956. |
34 | SENOO S, SHIKANO Y. Two-dimensional analysis for non-equilibrium homogeneously condensing flows through steam turbine cascade[J]. Japan Society of Mechanical Engineers, 2002, 45(4): 865-871. |
35 | 韩中合, 陈柏旺, 刘刚, 等. 湿蒸汽两相凝结流动中水滴生长模型研究[J]. 中国电机工程学报, 2011, 31(29):79-84. |
HAN Z H, CHEN B W, LIU G, et al. Droplets growth model in wet steam two-phase condensation flow[J]. Proceedings of the CSEE, 2011, 31(29):79-84. | |
36 | RUDEK M M, FISK J A, CHAKAROV V M, et al. Condensation of a supersaturated vapor. Ⅻ. The homogeneous nucleation of the n-alkanes[J]. The Journal of Chemical Physics, 1996, 105(11): 4707-4713. |
37 | LUIJTEN C C M, PEETERS P, DONGEN M E H VAN. Nucleation at high pressure. Ⅱ. Wave tube data and analysis[J]. Journal of Chemical Physics, 1999, 111(18): 8535-8544. |
38 | 程万. 伴随凝结的无粘可压缩流动研究[D]. 合肥: 中国科学技术大学, 2011. |
CHENG W. On inviscid compressible flows with condensation[D]. Hefei: University of Science and Technology of China, 2011. | |
39 | PEETER S P, LUIJTEN C C M, DONGEN M E H VAN. Transitional droplet growth and diffusion coefficients[J]. International Journal of Heat and Mass Transfer, 2001, 44(1): 181-193. |
40 | YELLOTT J I. Supersaturated steam[D]. USA: Johns Hopkins University, 1933. |
41 | PRANDTL L. General considerations on the flow of compressible fluids[C]//Volta Meeting, 1935. |
42 | MOSES C A, STEIN G D. On the growth of steam droplets formed in a Laval nozzle using both static pressure and light scattering measurements[J]. Journal of Fluids Engineering, 1978, 100(3): 311-322. |
43 | WYSLOUZIL B E, CHEUNG J L, WILEMSKI G, et al. Small angle neutron scattering from nanodroplet aerosols[J]. Physical Review Letters, 1997, 79(3): 431-434. |
44 | WYSLOUZIL B E, HEATH C H, CHEUNG J L, et al. Binary condensation in a supersonic nozzle[J]. The Journal of Chemical Physics, 2000, 113(17): 7317-7329. |
45 | BHABHE A, WYSLOUZIL B E. Nitrogen nucleation in a cryogenic supersonic nozzle[J]. The Journal of Chemical Physics, 2011, 135(24): 244311. |
46 | PATHAK H N. Nucleation and droplet growth during co-condensation of nonane and D2O in a supersonic nozzle[D]. USA: The Ohio State University, 2013. |
47 | GHOSH D, MANKA A, STREY R, et al. Using small angle X-ray scattering to measure the homogeneous nucleation rates of n-propanol, n-butanol, and n-pentanol in supersonic nozzle expansions[J]. The Journal of Chemical Physics, 2008, 129(12): 124302-124314. |
48 | GHOSH D, BERGMANN D, SCHWERING R, et al. Homogeneous nucleation of a homologous series of n-alkanes (CiH2i+2, i=7~10) in a supersonic nozzle[J]. The Journal of Chemical Physics, 2010, 132(2): 024307-024317. |
49 | 徐廷相, 黄跃. 过饱和水蒸气自发凝结现象实验装置的研制及实际流动Wilson点位置的确定[J]. 西安交通大学学报, 1984, 4(4):56-68. |
XU T X, HUANG Y. The development of an experimental apparatus to study the spontaneous condensation phenomena of the supersaturated steam and the method of defining Wilson point of the real steam flow[J]. Journal of Xi'an Jiaotong University, 1984, 4(4):56-68. | |
50 | 蔡小舒, 苏明旭, 沈建琪, 等. 颗粒粒度测量技术及应用[M]. 北京: 化学工业出版社, 2010. |
CAI X S, SU M X, SHEN J Q, et al. Particle size measurement technology and application[M]. Beijing: Chemical Industry Press, 2010. | |
51 | 蒋文明. 多组分凝结性超音速流传热传质理论及实验研究[D]. 北京: 北京工业大学, 2010. |
JIANG W M. A theoretical and experimental study of heat and mass transfer characteristics of multi-component condensing gas supersonic flows[D]. Beijing: Beijing University of Technology, 2010. | |
52 | 杨文. 天然气高速膨胀凝结相变特性研究[D]. 青岛: 中国石油大学(华东), 2016. |
YANG W. Condensation characterstics of natural gas in high speed expansion[D]. Qingdao: China University of Petroleum (East China), 2016. | |
53 | WÖLK J, STREY R. Homogeneous nucleation of H2O and D2O in comparison: the isotope effect[J]. The Journal of Physical Chemistry B, 2001, 105(47): 11683-11701. |
54 | LOOIJMANS K N H, DONGEN M E H VAN. Pulse-expansion wave tube for nucleation studies at high pressures[J]. Experiments in Fluids. 1997, 1(23): 54-63. |
55 | LUIJTEN C C M. Nucleation and droplet growth at high pressure[D]. Netherlands: Eindhoven University of Technology, 1998. |
56 | PEETERS P, PIETERSE G, HRUBÝ J, et al. Multi-component droplet growth. Ⅰ. Experiments with supersaturated n-nonane vapor and water vapor in methane[J]. Physics of Fluids, 2004, 16(7):2567-2574. |
57 | PEETERS P, PIETERSE G, DONGEN M E H VAN. Multi-component droplet growth. Ⅱ. A theoretical model[J]. Physics of Fluids, 2004, 7(16): 2575-2586. |
58 | WAGNER P E, STREY R. Two-pathway homogeneous nucleation in supersaturated water-n-nonane vapor mixtures[J]. Journal of Physical Chemistry B, 2001, 105 (47): 11656-11661. |
59 | HILL P G. Condensation of water vapour during supersonic expansion in nozzles[J]. Journal of Fluid Mechanics, 1966, 25(3): 593-620. |
60 | 俞茂铮, 陈孝隆. 存在自发凝结的超音速湿蒸汽双相流[J]. 西安交通大学学报, 1983, 17(1): 23-32. |
YU M Z, CHEN X L. Supersonic two-phase wet-steam flow in the presence of spontaneous condensation[J]. Journal of Xi'an Jiaotong University, 1983, 17(1): 23-32. | |
61 | 黄跃, 蔡颐年. 膨胀率对拉伐尔喷管超音速湿蒸汽流动凝结过程的影响[J]. 西安交通大学学报, 1984, 18(2): 51-61. |
HUANG Y, CAI Y N. The effect of rate of expansion on the condensation of supersonic wet steam flow in a Laval nozzle[J]. Journal of Xi’an Jiaotong University, 1984, 18(2): 51-61. | |
62 | 韩中合, 王智, 杨昆, 等. 膨胀率对湿蒸汽自发凝结流动影响的数值分析[J]. 华北电力大学学报, 2004, 31(2):36-39. |
HAN Z H, WANG Z, YANG K, et al. Numerical simulation of expansion rate on two-phase wet steam flow with spontaneous condensation[J]. Journal of North China Electric Power University, 2004, 31(2): 36-39. | |
63 | MATSUO S, SETOGUCHI T, YU S, et al. Effect of nonequilibrium condensation of moist air on the boundary layer in a supersonic nozzle[J]. Journal of Thermal Science, 1997, 6(4): 260-272. |
64 | SIMPSON D A, WHITE A J. Viscous and unsteady flow calculations of condensing steam in nozzles[J]. International Journal of Heat and Fluid Flow, 2005, 26(1): 71-79. |
65 | GERBER A G. Two-phase Eulerian/Lagrangian model for nucleating steam flow[J]. Journal of Fluids Engineering, 2002, 124(2): 465-475. |
66 | GERBER A G, KERMANI M J. A pressure based Eulerian-Eulerian multi-phase model for non-equilibrium condensation in transonic steam flow[J]. International Journal of Heat and Mass Transfer, 2004, 47(10): 2217-2231. |
67 | 林智荣, 袁新. 自发凝结流动数值模拟方法及其在Laval喷管中的应用[J]. 工程热物理学报, 2006, 27(1): 42-44. |
LIN Z R, YUAN X. A numerical method for spontaneous condensing flow and its application on Laval nozzle[J]. Journal of Engineering Thermophysics, 2006, 27(1): 42-44. | |
68 | 王美利. 高速膨胀流动中的非平衡凝结及其对流场影响的研究[D]. 合肥: 中国科学技术大学, 2006. |
WANG M L. Investigation of non-equilibrium condensation in high-speed expansion flows[D]. Hefei: University of Science and Technology of China, 2006. | |
69 | 杨勇. 水蒸气超音速流动中的非平衡相变与激波效应[D]. 大连: 大连理工大学, 2010. |
YANG Y. Non-equilibrium phase change and shock effect in supersonic steam flow[D]. Dalian: Dalian University of Technology, 2010. | |
70 | JIANG W M, BIAN J, LIU Y, et al. Investigation of flow characteristics and the condensation mechanism of ternary mixture in a supersonic nozzle[J]. Journal of Natural Gas Science and Engineering, 2016, 34(6): 1054-1061. |
71 | 费继友, 李瑜, 李亮. 甲烷、水蒸气与正壬烷气体的三相凝结流动数值分析[J]. 石油化工高等学校学报, 2008, 21(3): 1-4. |
FEI J Y, LI Y, LI L. Numerical analysis on the three-phase flow with condensation of CH4, H2O and n-C9H20[J]. Journal of Petrochemical Universities, 2008, 21(3): 1-4. | |
72 | 曹学文, 边江, 靳学堂, 等. 三组分气体超声速凝结过程数值模拟与实验研究[J]. 石油学报(石油加工), 2019, 35(1): 99-110. |
CAO X W, BIAN J, JIN X T, et al. Numerical simulation and experimental study on supersonic condensation process of ternary mixture[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2019, 35(1): 99-110. | |
73 | JONES I P, GUILBERT P W, OWENS M P, et al. The use of coupled solvers for complex multi-phase and reacting flows[C]//Third International Conference on CFD in the Minerals and Process Industries CSIRO, Melbourne, Australia, 2003. |
74 | JASSIM E, ABDI M A, MUZYCHKA Y. Computational fluid dynamics study for flow of natural gas through high-pressure supersonic nozzles: Part 1. Real gas effects and shockwave[J]. Petroleum Science and Technology, 2008, 26(15):1757-1772. |
75 | JASSIM E, ABDI M A, MUZYCHKA Y. Computational fluid dynamics study for flow of natural gas through high-pressure supersonic nozzles: Part 2. Nozzle geometry and vorticity[J]. Petroleum Science and Technology, 2008, 26(15): 1773-1785. |
76 | KARIMI A, ABDI M A. Selective dehydration of high-pressure natural gas using supersonic nozzles[J]. Chemical Engineering and Processing, 2009, 48(1): 560-568. |
77 | MALYSHKINA M M. The procedure for investigation of the efficiency of purification of natural gases in a supersonic separator[J]. High Temperature, 2010, 48(2): 244-250. |
78 | VAZIRI B M, SHAHSAVAND A. Optimal selection of supersonic separators inlet velocity components via maximization of swirl strength and centrifugal acceleration[J]. Separation Science and Technology, 2015, 50(5): 752-759. |
79 | 杨志毅. 油气超音速旋流分离技术研究[D]. 南充: 西南石油学院, 2004. |
YANG Z Y. Research on oil and gas supersonic cyclone separation technology[D]. Nanchong: Southwest Petroleum University, 2004. | |
80 | 刘恒伟. 超音速分离管的研发及其流动与传热传质特性的研究[D]. 北京: 北京工业大学, 2006. |
LIU H W. Development of supersonic separator and study of its flow and heat and mass transfer characteristics[D]. Beijing: Beijing University of Technology, 2006. | |
81 | 鲍玲玲, 刘中良, 蒋文明. 再循环超音速分离管除湿性能及其流动特性研究[J]. 工程热物理学报, 2011, 32(6): 1031-1034. |
BAO L L, LIU Z L, JIANG W M. The research of dehydration performance and flow characteristic of the recycling supersonic separator[J]. Journal of Engineering Thermophysics, 2011, 32(6): 1031-1034. | |
82 | 王治红, 朱超, 王小强, 等. 再循环腔进口位置对超音速分离器流场影响数值分析[J]. 石油与天然气化工, 2014, 43(2): 117-121. |
WANG Z H, ZHU C, WANG X Q, et al. Numerical analysis of influence of recycling chamber inlet position on the flow of supersonic separator[J]. Chemical Engineering of Oil and Gas, 2014, 43(2):117-121. | |
83 | 刘兴伟. 含可凝结组分气体超音速流动、非平衡相变及其流动与传质特性研究[D]. 北京: 北京工业大学, 2015. |
LIU X W. A study on the characteristics of non-equilibrium phase change, supersonic flow and mass transfer of condensing gases[D]. Beijing: Beijing University of Technology, 2015. | |
84 | 曹学文. 超声速旋流天然气分离研究[D]. 西安: 西安交通大学, 2006. |
CAO X W. A study on the supersonic swirling separation of natural gas[D]. Xi’an: Xi’an Jiaotong University, 2006. | |
85 | BIAN J, JIANG W M, TENG L, et al. Structure improvements and numerical simulation of supersonic separators[J]. Chemical Engineering and Processing, 2016, 110: 214-219. |
86 | 马庆芬. 旋转超音速凝结流动及其应用技术研究[D]. 大连: 大连理工大学, 2009. |
MA Q F. Study on the rotating supersonic condensing flow and application technology[D]. Dalian: Dalian University of Technology, 2009. | |
87 | 文闯, 曹学文, 杨燕, 等. 环形超声速喷管内天然气流场特性[J]. 化工进展, 2011, 30(4): 720-724. |
WEN C, CAO X W, YANG Y, et al. Flow characteristics of natural gas in annular supersonic nozzles[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 720-724. | |
88 | 王荧光. 循环超音速分离器的流体流动及实验性能研究[D]. 大连: 大连理工大学, 2019. |
WANG Y G. Research on fluid flow and experimental performance of circulating supersonic separator[D]. Dalian: Dalian University of Technology, 2019. | |
89 | NIKNAM P H, MORTAHEB H R, MOKHTARANI B. Dehydration of low-pressure gas using supersonic separation: experimental investigation and CFD analysis[J]. Journal of Natural Gas Science and Engineering, 2018, 52: 202-214. |
90 | MA Q F, HU D P, HE G H, et al. Performance of inner-core supersonic gas separation device with droplet enlargement method[J]. Chinese Journal of Chemical Engineering, 2009, 17(6): 925-933. |
91 | 文闯. 湿天然气超声速旋流分离机理研究[D]. 青岛: 中国石油大学(华东), 2014. |
WEN C. Wet gas separation using supersonic swirling method[D]. Qingdao: China University of Petroleum (EastChina), 2014. | |
92 | LIU H W, LIU Z L, FENG Y X, et al. Characteristic of a supersonic swirling dehydration system of natural gas[J]. Chinese Journal of Chemical Engineering, 2005, 13(1): 9-12. |
93 | 鲍玲玲. 超音速气体净化分离装置及其内部流动分离特性研究[D]. 北京: 北京工业大学, 2011. |
BAO L L. Study and development of new supersonic separators and their internal flow and separation performance[D]. Beijing: Beijing University of Technology, 2011. | |
94 | BROUWER J M, EPSOM H D. Twister supersonic gas conditioning for unmanned platforms and subsea gas processing[C]//Offshore Europe, Aberdeen, UK, 2003. |
95 | 蒋文明, 刘中良, 刘恒伟, 等. 新型天然气超音速脱水净化装置现场试验[J]. 天然气工业, 2008, 28(2): 136-138. |
JIANG W M, LIU Z L, LIU H W, et al. Field test of a new type natural gas supersonic dehydration and purification device[J]. Natural Gas Industry, 2008, 28(2): 136-138. | |
96 | 温艳军, 梅灿, 黄铁军, 等. 超音速分离技术在塔里木油气田的成功应用[J]. 天然气工业, 2012, 32(7): 77-79. |
WEN Y J, MEI C, HUANG T J, et al. Successful application of supersonic separation technology in Tarim oil and gas field[J]. Natural Gas Industry, 2012, 32(7):77-79. | |
97 | WILLEMS G P. Condensed rotational cleaning of natural gas[D]. Netherlands: Eindhoven University of Technology, 2009. |
98 | KROES J P. Droplet collection in a scaled-up rotating separator[D]. Netherlands: Eindhoven University of Technology, 2012. |
99 | SAMAWE R A, ROSTANI K, JALIL A M, et al. Concept proofing of supersonic nozzle separator for CO2 separation from natural gas using a flow loop[C]//Offshore Technology Conference Asia, Kuala Lumpur,2014. |
100 | IMAEV S Z, BAGIROV L A, BORISOV V E, et al. New low temperature process of CO2 recovery from natural gases[C]//SPE Asia Pacific Oil & Gas Conference and Exhibition, Adelaide, 2014. |
101 | 孙文娟. 天然气超声速旋流脱酸气机理研究[D]. 青岛: 中国石油大学(华东), 2018. |
SUN W J. Natural gas sweetening using supersonic swirling separation technology[D]. Qingdao: China Univrsity of Petroleum (East China), 2018. | |
102 | 杨文, 曹学文, 徐晓婷, 等. 高速膨胀天然气凝结流动特性[J]. 石油学报(石油加工), 2016, 32(1): 73-81. |
YANG W, CAO X W, XU X T, et al. Flow and condensation characteristics of natural gas with high speed expansion[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(1): 73-81. | |
103 | 边江, 曹学文, 杨文, 等. 入口压力对天然气超声速液化特性的影响[J]. 高压物理学报, 2018, 32(3): 1-7. |
BIAN J, CAO X W, YANG W, et al. Influence of inlet pressure on supersonic liquefaction of natural gas mixtures[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 1-7. | |
104 | 边江, 曹学文, 杨文, 等. 入口温度对天然气超声速液化性能的影响[J]. 制冷学报, 2019, 40(1): 107-113. |
BIAN J, CAO X W, YANG W, et al. Effect of inlet temperature on supersonic liquefaction characteristics of natural gas[J]. Journal of Refrigeration, 2019, 40(1): 107-113. | |
105 | BIAN J, CAO X W, YANG W, et al. Condensation characteristics of natural gas in the supersonic liquefaction process[J]. Energy, 2019, 168 (3): 99-110. |
[1] | 闫青, 张云峰, 赵敏伟, 宋宁, 高辉, 周静. LNG接收站大跨距补偿平台的可行性分析[J]. 化工进展, 2023, 42(S1): 158-165. |
[2] | 杨玉地, 李文韬, 钱永康, 惠军红. 工业燃烧室天然气湍流扩散火焰长度影响因素分析[J]. 化工进展, 2023, 42(S1): 267-275. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[5] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[6] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[7] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[8] | 宋民航, 赵立新, 徐保蕊, 刘琳, 张爽. 基于入口分散相重排序的旋流强化分离研究进展[J]. 化工进展, 2023, 42(5): 2219-2232. |
[9] | 张潇, 王占一, 吴峙颖, 刘玉婷, 刘子龙, 刘欣佳, 张遂安. 压裂支撑剂的覆膜改性技术[J]. 化工进展, 2023, 42(1): 386-400. |
[10] | 张猛, 李树谦, 张东, 马坤茹. 微细通道内蒸汽直接接触间歇凝结汽液相界面运动特性[J]. 化工进展, 2022, 41(9): 4644-4652. |
[11] | 贾文龙, 孙溢彬, 汤丁, 陈家文, 雷思罗, 李长俊. 基于支持向量机的输气管道泄漏压降信号智能识别方法[J]. 化工进展, 2022, 41(9): 4713-4722. |
[12] | 孙德贇, 胡艳宏, 刘鹏, 唐茂, 胡泽, 柳召刚, 吴锦绣. 不同铈盐体系(硝酸盐、硫酸盐、氯化盐)中CTAB与Ce3+的相互作用机理[J]. 化工进展, 2022, 41(6): 3212-3220. |
[13] | 王玉娟, 唐建峰, 花亦怀, 陈静, 桑伟, 刘云飞. 不同开车工况对天然气脱碳装置响应特性影响[J]. 化工进展, 2022, 41(4): 1770-1780. |
[14] | 马小娟, 王彧斐, 冯霄. 天然气水合物开采平台能量系统优化[J]. 化工进展, 2022, 41(3): 1667-1676. |
[15] | 陈伟锋, 尚娟, 邢百汇, 魏皓天, 顾超华, 花争立. 关于天然气管网安全掺氢比10%的商榷[J]. 化工进展, 2022, 41(3): 1487-1493. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |