化工进展 ›› 2021, Vol. 40 ›› Issue (3): 1594-1603.DOI: 10.16085/j.issn.1000-6613.2020-0880
董艳梅1(), 安艳霞1,2(), 马阳阳1, 张剑1, 李梦琴1
收稿日期:
2020-05-21
出版日期:
2021-03-05
发布日期:
2021-03-17
通讯作者:
安艳霞
作者简介:
董艳梅(1995—),女,硕士研究生,研究方向为农产品加工。E-mail:基金资助:
DONG Yanmei1(), AN Yanxia1,2(), MA Yangyang1, ZHANG Jian1, LI Mengqin1
Received:
2020-05-21
Online:
2021-03-05
Published:
2021-03-17
Contact:
AN Yanxia
摘要:
木质纤维素生物质转化为生物燃料或化工产品一般需经历预处理、酶解及发酵过程,因其复杂的化学结构,在酶解前通常进行预处理以破坏其致密结构,提高酶与纤维素的可及性。深度共熔溶剂(DES)是一类新型的“绿色”溶剂,具有制备简单、价格低廉、性质可调、可生物降解、可循环使用等优势,可有效去除木质素组分,同时保留大部分纤维素,在生物质预处理方面具有巨大的潜力。本文介绍了DES的构成、分类及理化性质,总结了DES预处理对生物质组分的影响,并对预处理效果的影响因素如底物和DES的类型、溶剂黏度、温度、生物载量、微波及超声波辅助工艺和两阶段处理工艺等方面进行分析,探讨了DES和生物的相容性,最后针对DES存在的问题及缺点,提出了理性设计和大规模利用DES的机遇与挑战,本文可为实现生物质的低成本预处理和高价值利用提供新的思路。
中图分类号:
董艳梅, 安艳霞, 马阳阳, 张剑, 李梦琴. 深度共熔溶剂预处理木质纤维素生物质研究进展[J]. 化工进展, 2021, 40(3): 1594-1603.
DONG Yanmei, AN Yanxia, MA Yangyang, ZHANG Jian, LI Mengqin. Research progress on deep eutectic solvent of lignocellulose pretreatment[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1594-1603.
生物质 | 预处理试剂及条件 | 木质素去除率/% | 半纤维素去除率/% | 纤维素转化率/% |
---|---|---|---|---|
玉米秸秆 | ChCl-甲酸[(1∶2)/130℃] | 23.8 | 66.2 | 99[ |
玉米芯 | 未处理 | 0 | 0 | 32.8[ |
ChCl-丙三醇[(1∶2)/80℃] | 20.5 | 2.7 | 39.9[ | |
ChCl-丙三醇[(1∶2)/115℃] | 26.3 | 9,8 | 79.1[ | |
ChCl-丙三醇[(1∶2)/150℃] | 59.0 | 47.5 | 91.5[ | |
ChCl-尿素[(1∶2)/80℃] | 27.1 | 1.4 | 51.0[ | |
ChCl-尿素[(1∶2)/115℃] | 37.5 | 14.2 | 58.6[ | |
ChCl-咪唑[(3∶7)/115℃] | 76.7 | 41.5 | 94.0[ | |
ChCl-咪唑[(3∶7)/150℃] | 84.9 | 85.3 | 94.6[ | |
水稻秸秆 | 未处理 | 0 | 0 | 23.9[ |
乳酸-乙二醇[(1∶1)/120℃] | 41.4 | 51.9 | 58.2[ | |
乳酸-丙三醇[(1∶1)/120℃] | 30.7 | 28.7 | 56.4[ | |
乳酸-丙三醇[(1∶1)/120℃] | 27.9 | 25.7 | 47.0[ | |
乳酸-甲酰胺[(1∶1)/120℃] | 46.4 | 31.7 | 50.1[ | |
乳酸-尿素[(1∶1)/120℃] | 28.8 | 19.1 | 23.4[ | |
乳酸-盐酸胍[(1∶1)/120℃] | 61.0 | 87.7 | 80.3[ | |
ChCl-乙二醇[(1∶1)/120℃] | 28.7 | 20.8 | 33.2[ | |
ChCl-1,2-丙二醇[(1∶1)/120℃] | 32.9 | 26.1 | 36.3[ | |
ChCl-1,3-丙二醇[(1∶1)/120℃] | 34.2 | 26.9 | 41.8[ | |
ChCl-1,3-乙醇酸[(1∶1)/120℃] | 36.9 | 78.6 | 79.1[ | |
ChCl-乳酸[(1∶1)/120℃] | 25.4 | 80.7 | 83.8[ | |
ChCl-2-氯丙酸[(1∶1)/120℃] | 13 | 99.7 | 82.5[ | |
ChCl-2-草酸[(1∶1)/120℃] | 9.3 | 96.9 | 83.9[ | |
柳枝稷 | ChCl-对羟基苯甲醇[(1∶1)/160℃] | 0.4 | 28.6 | 32.0[ |
ChCl-邻苯二酚[(1∶1)/160℃] | 48.9 | 43.2 | 77.0[ | |
ChCl-香草醛醇[(1∶2)/160℃] | 52.5 | 49.6 | 79.8[ | |
ChCl-对香豆酸醇[(1∶1)/160℃] | 60.6 | 70.7 | 85.7[ |
表1 不同预处理条件时木质素和半纤维素去除率及纤维素转化率
生物质 | 预处理试剂及条件 | 木质素去除率/% | 半纤维素去除率/% | 纤维素转化率/% |
---|---|---|---|---|
玉米秸秆 | ChCl-甲酸[(1∶2)/130℃] | 23.8 | 66.2 | 99[ |
玉米芯 | 未处理 | 0 | 0 | 32.8[ |
ChCl-丙三醇[(1∶2)/80℃] | 20.5 | 2.7 | 39.9[ | |
ChCl-丙三醇[(1∶2)/115℃] | 26.3 | 9,8 | 79.1[ | |
ChCl-丙三醇[(1∶2)/150℃] | 59.0 | 47.5 | 91.5[ | |
ChCl-尿素[(1∶2)/80℃] | 27.1 | 1.4 | 51.0[ | |
ChCl-尿素[(1∶2)/115℃] | 37.5 | 14.2 | 58.6[ | |
ChCl-咪唑[(3∶7)/115℃] | 76.7 | 41.5 | 94.0[ | |
ChCl-咪唑[(3∶7)/150℃] | 84.9 | 85.3 | 94.6[ | |
水稻秸秆 | 未处理 | 0 | 0 | 23.9[ |
乳酸-乙二醇[(1∶1)/120℃] | 41.4 | 51.9 | 58.2[ | |
乳酸-丙三醇[(1∶1)/120℃] | 30.7 | 28.7 | 56.4[ | |
乳酸-丙三醇[(1∶1)/120℃] | 27.9 | 25.7 | 47.0[ | |
乳酸-甲酰胺[(1∶1)/120℃] | 46.4 | 31.7 | 50.1[ | |
乳酸-尿素[(1∶1)/120℃] | 28.8 | 19.1 | 23.4[ | |
乳酸-盐酸胍[(1∶1)/120℃] | 61.0 | 87.7 | 80.3[ | |
ChCl-乙二醇[(1∶1)/120℃] | 28.7 | 20.8 | 33.2[ | |
ChCl-1,2-丙二醇[(1∶1)/120℃] | 32.9 | 26.1 | 36.3[ | |
ChCl-1,3-丙二醇[(1∶1)/120℃] | 34.2 | 26.9 | 41.8[ | |
ChCl-1,3-乙醇酸[(1∶1)/120℃] | 36.9 | 78.6 | 79.1[ | |
ChCl-乳酸[(1∶1)/120℃] | 25.4 | 80.7 | 83.8[ | |
ChCl-2-氯丙酸[(1∶1)/120℃] | 13 | 99.7 | 82.5[ | |
ChCl-2-草酸[(1∶1)/120℃] | 9.3 | 96.9 | 83.9[ | |
柳枝稷 | ChCl-对羟基苯甲醇[(1∶1)/160℃] | 0.4 | 28.6 | 32.0[ |
ChCl-邻苯二酚[(1∶1)/160℃] | 48.9 | 43.2 | 77.0[ | |
ChCl-香草醛醇[(1∶2)/160℃] | 52.5 | 49.6 | 79.8[ | |
ChCl-对香豆酸醇[(1∶1)/160℃] | 60.6 | 70.7 | 85.7[ |
1 | AGRAWAL R, VERMA A K, SATLEWAL A. Application of nanoparticle-immobilized thermostable beta-glucosidase for improving the sugarcane juice properties[J]. Innovative Food Science & Emerging Technologies, 2016, 33: 472-482. |
2 | WANG Yanting, FAN Chunfen, HU Huizhen, et al. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops[J]. Biotechnology Advances, 2016, 34: 997-1017. |
3 | DUTTA T, PAPA G, WANG Eileen, et al. Characterization of lignin streams during bionic liquid-based pretreatment from grass, hardwood and softwood[J]. ACS Sustainable Chemistry & Engineering, 2018, 6: 3079-3090. |
4 | YANG Bin, WYMAN C E. Pretreatment: the key to unlocking low-cost cellulosic ethanol[J]. Biofuel Bioproduct Bioresource, 2008, 2: 26-40. |
5 | ABBOTT A P, CAPPER G, DAVIES D L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003, 1: 70-71. |
6 | XU Guochao, DING Jicai, HAN Ruizhi, et al. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation[J]. Bioresource Technology, 2016, 203: 364-369. |
7 | GORKE J T, SRIENC F, KAZLAUSKAS R J. Deep eutectic solvents for candida antarctica lipase B-catalyzed reactions[J]. American Chemical Society, 2010, 1038: 169-180. |
8 | MBOUS Y P, HAYYAN M, HAYYAN A, et al. Applications of deep eutectic solvents in biotechnology and bioengineering-promises and challenges[J]. Biotechnology Advances, 2017, 35: 105-134. |
9 | DE OLIVEIRA VIGIE K, CHATEL G, JÉRÔME F, et al. Contribution of deep eutectic solvents for biomass processing: opportunities, challenges, and limitations[J]. Chemcatchem, 2015, 7: 1250-1260. |
10 | LORES H, ROMERO V, COSTAS I, et al. Natural deep eutectic solvents in combination with ultrasonic energy as a green approach for solubilisation of proteins: application to gluten determination by immunoassay[J]. Talanta, 2017, 162: 453-459. |
11 | TANG Xing, ZUO Miao, LI Zheng, et al. Green processing of lignocellulosic biomass and its derivatives in deep eutectic solvents[J]. Chemsuschem, 2017, 10: 2696-2706. |
12 | OSCH D D VAN, KOLLAU L J B M, BRUINHORST A VAN DEN, et al. Ionic liquids and deep eutectic solvents for lignocellulosic biomass fractionation[J]. Physical Chemistry Chemical Physics, 2017, 19: 2636-2665. |
13 | SMITH E L, ABBOTT A P, RYDER K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114: 11060-11082. |
14 | PROCENTESE A, JOHNSON E, ORR V, et al. Deep eutectic solvent pretreatment and subsequent saccharification of corncob[J]. Bioresource Technology, 2015, 192: 31-36. |
15 | 张成武. 低共熔溶剂预处理木质纤维素的研究[D]. 天津: 天津大学, 2016. |
ZHANG Chengwu. Study on the pretreatment of lignocellulose by deep eutectic solvents[D]. Tianjin: Tianjin University, 2016. | |
16 | ABOHAMAD A, HAYYAN M, ALSAADI M A, et al. Potential applications of deep eutectic solvents in nanotechnology[J]. Chemical Engineering Journal, 2015, 273: 551-567. |
17 | AGRAWAL R, GAUR R, MATHUR A, et al. Improved saccharification of pilot-scale acid pretreated wheat straw by exploiting the synergistic behavior of lignocellulose degrading enzymes[J]. RSC Advances, 2015, 5: 71462-71471. |
18 | CAPOLUPO L, FARACO V. Green methods of lignocellulose pretreatment for biorefinery development[J]. Applied Microbiology and Biotechnology, 2016, 100: 9451-9467. |
19 | DEN W, SHARMA V K, Mengshan LEE, et al. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to wnergy and value-added chemicals[J]. Frontiers in Chemistry, 2018, 6: 141. |
20 | SEIDL P R, GOULART A K. Pretreatment processes for lignocellulosic biomass conversion to biofuels and bioproducts[J]. Current Opinion in Green and Sustainable Chemistry, 2016, 2: 48-53. |
21 | SATLEWAL A, AGRAWAL R, BHAGIA S, et al. Rice straw as a feedstock for biofuels: availability, recalcitrance, and chemical properties[J]. Biofuels Bioproducts & Biorefining, 2018, 12: 83-107. |
22 | AKINOSHO H, RYDAZAK T, BOROLE A, et al. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance[J]. Ecotoxicology, 2015, 24: 2156-2174. |
23 | Chang Geun YOO, PU Yunqiao, RAGAUSKAS A J. Ionic liquids: promising green solvents for lignocellulosic biomass utilization[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 5: 5-11. |
24 | LOOW Yu-Loong, Eng Kein NEW, YANG Ge Hoa, et al. Potential use of deep eutectic solvents to facilitate lignocellulosic biomass utilization and conversion[J]. Cellulose, 2017, 24: 3591-3618. |
25 | KUMAR A K, PARIKH B S, PRAVAKAR M. Natural deep eutectic solvent mediated pretreatment of rice straw: bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue[J]. Environmental Science and Pollution Research, 2016, 23: 9265-9275. |
26 | ZULKEFLI S, ABDULMALEK E, RAHMAN M B A. Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk[J]. Renewable Energy, 2017, 107: 36-41. |
27 | HOU Xuedan, FENG Guojian, YE Mei, et al. Significantly enhanced enzymatic hydrolysis of rice straw via a high-performance two-stage deep eutectic solvents synergistic pretreatment[J]. Bioresource Technology, 2017, 238: 139-146. |
28 | SARMAD S, XIE Yujiao, MIKKOLA J P, et al. Screening of deep eutectic solvents (DESs) as green CO2 sorbents: from solubility to viscosity[J]. New Journal of Chemistry, 2017, 41: 290-301. |
29 | PANDEY A, BHAWNA, DHINGRA D, et al. Hydrogen bond donor/acceptor cosolvent-modified choline chloride-based deep eutectic solvents[J]. Journal of Physical Chemistry B, 2017, 121: 4202-4212. |
30 | KILPELAINEN I, XIE Haibo, KING A, et al. Dissolution of wood in ionic liquids[J]. Journal of Agricutural Food Chemistry, 2007, 55: 9142-9148. |
31 | HOU Xuedan, SMITH T J, LI Ning, et al. Novel renewable ionic liquids as highly effective solvents for pretreatment of rice straw biomass by selective removal of lignin[J]. Biotechnology and Bioengineering, 2012, 109: 2484-2493. |
32 | Sang Hyun LEE, DOHERTY T V, LINHARDT R J, et al. Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis[J]. Biotechnology and Bioengineering, 2009, 102: 1368-1376. |
33 | BHAGIA S, LI Hongjia, GAO Xiadi, et al. Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance[J]. Biotechnology for Biofuels, 2016, 9: 245. |
34 | DUMITRACHE A, TOLBERT A, NATZKE J, et al. Cellulose and lignin colocalization at the plant cell wall surface limits microbial hydrolysis of Populus biomass[J]. Green Chemistry, 2017, 19: 2275-2285. |
35 | LI Mi, PU Yunqiao, RAGAUSKAS A J. Current understanding of the correlation of lignin structure with biomass recalcitrance[J]. Frontiers in Chemistry, 2016, 4: 45. |
36 | KIM Kwang Ho, DUTTA T, SUN Jian, et al. Biomass pretreatment using deep eutectic solvents from lignin derived phenols[J]. Green Chemistry, 2018, 20: 809-815. |
37 | LIU Yongzhuang, CHEN Wenshuai, XIA Qinqin, et al. Efficient cleavage of lignin-carbohydrate complexes and ultrafast extraction of lignin oligomers from wood biomass by microwave-assisted treatment with deep eutectic solvent[J]. ChemSusChem, 2017, 10: 1692-1700. |
38 | KARIMI K, TAHERZADEH M J. A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity[J]. Bioresource Technology, 2016, 200: 1008-1018. |
39 | PROCENTESE A, RAGANATI F, OLIVIERI G, et al. Deep eutectic solvents pretreatment of agro-industrial food waste[J]. Biotechnology for Biofuels, 2018, 11: 37. |
40 | ZHANG Qinghua, BENOIT M, DE OLIVEIRA VIGIE K, et al. Green and inexpensive choline-derived solvents for cellulose decrystallization[J]. Chemistry - a European Journal, 2012, 18: 1043-1046. |
41 | REN Hongwei, CHEN Chunmao, GUO Shaohui, et al. Synthesis of a novel allyl-functionalized deep eutectic solvent to promote dissolution of cellulose[J]. Bioresources, 2016, 11: 8457-8469. |
42 | REN Hongwei, CHEN Chunmao, WANG Qinghong, et al. The properties of choline chloride-based deep eutectic solvents and their performance in the dissolution of cellulose[J]. Bioresources, 2016, 11: 5435-5451. |
43 | JABLONSKY M, SKULCOVA A, KAMENSKA L, et al. Deep eutectic solvents: fractionation of wheat straw[J]. Bioresources, 2015, 10: 8039-8047. |
44 | NOR N A M, MSUTAPHA W A W, HASSAN O. Deep eutectic solvent (DES) as a pretreatment for oil palm empty fruit bunch (OPEFB) in sugar production, in molecular and cellular life sciences: infectious diseases[J]. Biochemistry and Structural Biology, 2015, 18: 147-154. |
45 | HOU Xuedan, LI Aolin, LIN Kaipeng, et al. Insight into the structure-function relationships of deep eutectic solvents during rice straw pretreatment[J]. Bioresource Technology, 2018, 249: 261-267. |
46 | BRANDT A, GRASVIK J, HALLETT J P, et al. Deconstruction of lignocellulosic biomass with ionic liquids[J]. Green Chemistry, 2013, 15: 550-583. |
47 | WANG Hanjie, DE Vries Frits P, JIN Yongcan. A win-win technique of stabilizing sand dune and purifying paper mill black-liquor[J]. Journal of Environmental Sciences, 2009, 21: 488-493. |
48 | WAHLSTROM R, HILTUNEN J, SIRKKA M, et al. Comparison of three deep eutectic solvents and 1-ethyl-3-methylimidazolium acetate in the pretreatment of lignocellulose: effect on enzyme stability, lignocellulose digestibility and one-pot hydrolysis[J]. RSC Advances, 2016, 6: 68100-68110. |
49 | LYNAM J G, KUMAR N, WONG M J. Deep eutectic solvents’ ability to solubilize lignin, cellulose, and hemicellulose; thermal stability; and density[J]. Bioresource Technology, 2017, 238: 684-689. |
50 | ZHAO Zheng, CHEN Xiaochun, ALI M F, et al. Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis[J]. Bioresource Technology, 2018, 263: 325-333. |
51 | FRANCISCO M, VANDEN B A, KROON M C. New natural and renewable low transition temperature mixtures (LTTMs): screening as solvents for lignocellulosic biomass processing[J]. Green Chemistry, 2012, 14: 2153-2157. |
52 | MAMILLA J LK, NOVAK U, GRILC M, et al. Natural deep eutectic solvents (DES) for fractionation of waste lignocellulosic biomass and its cascade conversion to value-added bio-based chemicals[J]. Biomass & Bioenergy, 2019, 120: 417-425. |
53 | 李奥林. 深度共熔溶剂介导的水稻秸秆关键组分分离及相关机理研究[D]. 广州: 广东工业大学, 2019. |
LI Aolin. Fractionation of the key components of rice straw by using deep eutectic solvent and its related mechanism[D]. Guangzhou: Guangdong University of Technology, 2019. | |
54 | CARRIAZO D, SERRANO M C, GUTIERREZ M C,, et al. Deep-eutectic solvents playing multiple roles in the synthesis of polymers and related materials[J]. Chemical Society Reviews, 2012, 41: 4996-5014. |
55 | ASSANOSI A A, FARAH M M, WOOD J, et al. A facile acidic choline chloride-p-TSA DES-catalysed dehydration of fructose to 5-hydroxymethylfurfural[J]. RSC Advances, 2014, 4: 39359-39364. |
56 | YIIN C L, QUITAIN A T, YUSUP S, et al. Characterization of natural low transition temperature mixtures (LTTMs): green solvents for biomass delignification[J]. Bioresource Technology, 2016, 199: 258-264. |
57 | FISCHER V, KUNZ W. Properties of sugar-based low-melting mixtures[J]. Molecular Physics, 2014, 112: 1241-1245. |
58 | ZDANOWICZ M, WILPISZEWSKA K, SPYCHAJ T. Deep eutectic solvents for polysaccharides processing. a review[J]. Carbohydrate Polymers, 2018, 200: 361-380. |
59 | DAI Yuntao, SPRONSEN J VAN, G-J WITKAMP, et al. Natural deep eutectic solvents as new potential media for green technology[J]. Analytica Chimica Acta, 2013, 766: 61-68. |
60 | KANDANELLI R, THULLURI C, MANGALA R, et al. A novel ternary combination of deep eutectic solvent-alcohol (DES-OL) system for synergistic and efficient delignification of biomass[J]. Bioresource Technology, 2018, 265: 573-576. |
61 | BOONSOMBUTI A, LUENGNARUEMITCHAI A, WONGKASEMJIT S. Enhancement of enzymatic hydrolysis of corncob by microwave-assisted alkali pretreatment and its effect in morphology[J]. Cellulose, 2013, 20: 1957-1966. |
62 | CHEN Zhu, WAN Caixia. Ultrafast fractionation of lignocellulosic biomass by microwave-assisted deep eutectic solvent pretreatment[J]. Bioresource Technology, 2018, 250: 532-537. |
63 | MALAEKE H, HOUSAINDOKHT M R, MONHEMI H, et al. Deep eutectic solvent as an efficient molecular liquid for lignin solubilization and wood delignification[J]. Journal of Molecular Liquids, 2018, 263: 193-199. |
64 | NINOMIYA K, OMOTE S, OGINO C, et al. Saccharification and ethanol fermentation from cholinium ionic liquid-pretreated bagasse with a different number of post-pretreatment washings[J]. Bioresource Technology, 2015, 189: 203-209. |
65 | GORKE J T, SRIENC F, KAZLAUSKAS R J. Hydrolase-catalyzed biotransformations in deep eutectic solvents[J]. Chemical Communications, 2008, 10: 1235-1237. |
66 | GUNNY A N N, ARBAIN D, NASHEF E M, et al. Applicability evaluation of deep eutectic solvents-cellulase system for lignocellulose hydrolysis[J]. Bioresource Technology, 2015, 181: 297-302. |
67 | AGRAWAL R, SATLEWAL A, SHARMA B, et al. Induction of cellulases by disaccharides or their derivatives in Penicillium janthinellum EMS-UV-8 mutant[J]. Biofuels, 2017, 8: 615-622. |
68 | HAYYAN M, HASHIM M A, HAYYAN A, et al. Are deep eutectic solvents benign or toxic?[J]. Chemosphere, 2013, 90: 2193-2195. |
69 | HAYYAN M, HASHIM MA, AL-SAADI M A, et al. Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents[J]. Chemosphere, 2013, 93: 455-459. |
70 | XU Pei, ZHENG Gaowei, ZONG Minhua, et al. Recent progress on deep eutectic solvents in biocatalysis[J]. Bioresources and Bioprocessing, 2017, 4: 34. |
71 | JEONG Kyungmin, Minsang LEE, Minwoo NAM, et al. Tailoring and recycling of deep eutectic solvents as sustainable and efficient extraction media[J]. Journal of Chromatography, 2015, 1424: 10-17. |
72 | LOBO H R, SINGH B S, SHANKARLING G S. Deep eutectic solvents and glycerol: a simple, environmentally benign and efficient catalyst/reaction media for synthesis of N-aryl phthalimide derivatives[J]. Green Chemistry Letters and Reviews, 2012, 5: 487-533. |
73 | LI Changping, LI Dan, ZOU Shuangshuang, et al. Extraction desulfurization process of fuels with ammonium-based deep eutectic solvents[J]. Green Chemistry, 2013, 15: 2793-2799. |
[1] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[2] | 张乐乐, 钱运东, 朱华曈, 冯思龙, 杨秀娜, 于颖, 杨强, 卢浩. 加氢原料煤焦油脱水除盐预处理工艺优化限值[J]. 化工进展, 2023, 42(5): 2298-2305. |
[3] | 韩明阳, 乔慧, 付佳铭, 马泽雯, 王妍, 欧阳嘉. 非水溶剂预处理木质纤维原料研究进展[J]. 化工进展, 2022, 41(8): 4086-4097. |
[4] | 阮敏, 孙宇桐, 黄忠良, 李辉, 张轩, 吴希锴, 赵成, 姚世蓉, 张拴保, 张巍, 黄兢. 污泥预处理-厌氧消化体系的能源经济性评价[J]. 化工进展, 2022, 41(3): 1503-1516. |
[5] | 解先利, 刘云云, 余强, 张宇, 张荣清, 邱雨心. 低共熔溶剂预处理提高甘草渣酶解效果优化[J]. 化工进展, 2022, 41(3): 1349-1356. |
[6] | 王娜, 宋秀兰, 昝博韬. 复合菌群利用模拟APG协同FNA预处理剩余污泥水解液合成PHA[J]. 化工进展, 2022, 41(2): 1017-1024. |
[7] | 王艺霖, 李诗杰. 盐酸预处理对浒苔基活性炭电化学性能的影响[J]. 化工进展, 2022, 41(12): 6454-6460. |
[8] | 刘乾静, 陈晓淼, 王芷, 史吉平, 李保国, 刘莉. 低共熔溶剂预处理杨木水解渣拆解木质素[J]. 化工进展, 2022, 41(10): 5612-5618. |
[9] | 张强, 陈诗阳. 氧气辅助湿热预处理对玉米秸秆酒精发酵的影响[J]. 化工进展, 2022, 41(1): 161-165. |
[10] | 聂煜东, 李金, 张贤明. 水处理过程中膜污染问题及其预处理技术研究进展[J]. 化工进展, 2021, 40(4): 2278-2289. |
[11] | 王锦雪, 邵立明, 吕凡, 章骅, 何品晶. 生活垃圾收运及处理处置过程中产生恶臭的监测和分析方法[J]. 化工进展, 2021, 40(2): 1058-1068. |
[12] | 王亭亭, 赵智强, 张耀斌. 碱预处理耦合零价铁强化含油污泥厌氧消化[J]. 化工进展, 2021, 40(1): 534-541. |
[13] | 仉利, 姚宗路, 赵立欣, 李志合, 易维明, 付鹏, 袁超. 生物质热解制备高品质生物油研究进展[J]. 化工进展, 2021, 40(1): 139-150. |
[14] | 陆佳, 刘伟, 王欣, 苏小红, 范超. 玉米秸秆衍生碳基固体酸的制备及其催化纤维素水解糖化[J]. 化工进展, 2020, 39(9): 3635-3642. |
[15] | 章旭, 许丹, 熊源泉. 水热预处理对稻壳焦热电性能的影响[J]. 化工进展, 2020, 39(7): 2632-2638. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |