化工进展 ›› 2021, Vol. 40 ›› Issue (3): 1187-1201.DOI: 10.16085/j.issn.1000-6613.2020-1944
王颖1,2,3(), 曲俊泽1,2,3(), 梁楠1,2,3, 郝鹤1,2,3, 元英进1,2,3()
收稿日期:
2020-09-23
出版日期:
2021-03-05
发布日期:
2021-03-17
通讯作者:
元英进
作者简介:
王颖(1983—),女,讲师,研究方向为合成生物学。E-mail:基金资助:
WANG Ying1,2,3(), QU Junze1,2,3(), LIANG Nan1,2,3, HAO He1,2,3, YUAN Yingjin1,2,3()
Received:
2020-09-23
Online:
2021-03-05
Published:
2021-03-17
Contact:
YUAN Yingjin
摘要:
类胡萝卜素具有丰富的颜色和强抗氧化活性,这赋予了该类产品较高的商业价值,加速了该类产品合成路径在异源底盘中的构建进程,使之成为发展非理性设计策略的有效研究对象。本文主要针对微生物合成类胡萝卜素细胞工厂构建中的瓶颈问题,从增强合成类胡萝卜素前体GGPP的供给利用以及缓解各类胡萝卜素产品对微生物底盘细胞的胁迫压力两个角度,系统综述非理性设计策略对元件优化、模块适配和多维调控等路径构建优化方法的丰富,以及对不同尺度的DNA变异和适应性进化等底盘进化手段的推动作用。并从扩展类胡萝卜素合成底盘物种的多样性和丰富非天然类胡萝卜素产品结构的可获得性的需求出发,对构建合成该类产品微生物细胞工厂自动化和智能化的发展趋势进行展望。
中图分类号:
王颖, 曲俊泽, 梁楠, 郝鹤, 元英进. 合成类胡萝卜素细胞工厂的快速构建和定向进化[J]. 化工进展, 2021, 40(3): 1187-1201.
WANG Ying, QU Junze, LIANG Nan, HAO He, YUAN Yingjin. Rapid construction and directed evolution of cell factories for carotenoid biosynthesis[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1187-1201.
底盘物种 | 产品 | 工程化手段 | 产量/mg·L-1 | 产率/mg·g DCW-1 | 参考文献 |
---|---|---|---|---|---|
大肠杆菌 | 番茄红素 | 过表达磷酸戊糖途径和TCA循环关键蛋白戊二酸脱氢酶SucAB、琥珀酸脱氢酶SdhABCD和转醛酶B TalB,提高底盘NADPH和ATP的供给 基于RBS序列调节dxs、idi和crt基因簇的转录水平 | 3520 | 50.6 | [ |
β-胡萝卜素 | 将合成路径划分为MEP路径、β-胡萝卜素合成、ATP合成、磷酸戊糖途径、TCA循环5个模块,分别进行工程化优化改造 调节MEP路径模块和β-胡萝卜素合成模块表达强度,过表达dxs和idi 过表达α-酮戊二酸脱氢酶SucAB和琥珀酸脱氢酶SdhABCD,增强TCA循环,提高能量和还原力NADPH供给 过表达转醛酶TalB,增强磷酸戊糖途径,提高NADPH供给 | 2100 | 59.9 | [ | |
β-胡萝卜素 | 敲除葡萄糖-6-磷酸脱氢酶编码基因zwf,减弱碳代谢流进入磷酸戊糖途径;以半乳糖渗透酶系统(galP)替代葡萄糖磷酸转移酶系统(ptsHIcrr)负责葡萄糖转运,减少磷酸烯醇式丙酮酸的消耗,提高MEP路径前体供给 敲除醛还原酶编码基因yjgB,降低NADPH的消耗;过表达nadK,将NADH转化为NADPH,提高NADPH供给 | 2579 | NP | [ | |
β-胡萝卜素 | 引入异源MVA路径 上调dxs、fni、GPPS2,优化内源MEP路径 发酵条件优化,以甘油为碳源 | 3200 | NP | [ | |
玉米黄质 | 应用可调控基因间序列平衡异MVA路径蛋白表达 使用IPP/FPP响应启动子动态调控异源MVA路径基因,避免有毒中间代谢物积累 | 722.5 | 23.2 | [ | |
虾青素 | 组合筛选路径基因启动子,促进番茄红素向β-胡萝卜素转化 OmpF和TrxA标签分别与截短蛋白N端或C端融合,实现CrtW的稳定表达和质膜定位 优化培养基碳源和发酵温度,降低IPTG诱导浓度 基于代谢流分析选择过表达靶点ispD和ispF 引入毒素-抗毒素系统hok/sok,提高表达质粒稳定性 | 432.8 | 7.12 | [ | |
藏红花酸 | 组合筛选CCD、ALD、UGT 体外酶活实验确定UGT功能 | 4.42 | NP | [ | |
酿酒酵母 | 番茄红素 | CrtB序列的筛选 CrtYB与CrtE的定向进化 调节Crt编码基因拷贝数 构建非营养缺陷二倍体细胞 | 1610 | 24.41 | [ |
番茄红素 | 过表达乙醇脱氢酶ADH2、乙醛脱氢酶ALD6和来自沙门氏菌的乙酰-CoA合成酶ACS,提高前体乙酰-CoA的供给 过表达tHMGR,增强MVA路径 过表达NADH激酶POS5,促进NADH向NADPH的转化 增加CrtE和CrtI的拷贝数 敲除YPL062W和EXG1 引入乙酰-CoA羧化酶ACC1突变体S659A/S1157A,过表达磷脂酸磷酸酶PAH1和二酰基甘油酰基转移酶DGA1,增强甘油三酯的合成 过表达脂肪酸脱氢酶OLE1,增加不饱和脂肪酸的含量 敲除Seipin编码基因FLD1,增大脂质体体积 | 2370 | 73.3 | [ | |
番茄红素 | 启动子筛选 过表达tHMGR,增强MVA路径 筛选CrtE、CrtB、CrtI来源,增加CrtE和CrtI的拷贝数 过表达NADH激酶POS5,促进NADH向NADPH的转化 过表达乙醇脱氢酶ADH2、乙醛脱氢酶ALD6和来自沙门氏菌的乙酰-CoA合成酶ACS,提高前体乙酰-CoA的供给 ΔGAL80与ΔGAL1,7,10诱导系统的比较 | 3280 | NP | [ | |
番茄红素 | 敲除YPL062W提高乙酰-CoA供给 组合筛选CrtE、CrtB、CrtI来源 调节CrtI表达水平 选择底盘交配型 工程化非路径相关靶点,即敲除ROX1和过表达INO2 引入异源血红蛋白VHb 连续自循环发酵 | 5880 | NP | [ | |
β-胡萝卜素 | 以GAL系统和HXT1启动子时序调控胡萝卜素和竞争性鲨烯的合成 | 1156 | 20.8 | [ | |
虾青素 | CrtZ和CrtW协同定向进化 温敏调控系统控制关键基因表达 | 235.0 | NP | [ | |
虾青素 | 等离子体诱变与适应性进化交替,促进菌株进化 | 404.8 | NP | [ | |
藏红花酸 | 组合筛选CrtZ、CCD、ALD 发酵温度优化 CCD和ALD的过表达 | 6.278 | NP | [ | |
藏红花酸 | 引入温敏调控系统控制藏红花酸合成,隔离细胞生长和生产 调节CCD2和ALDH的拷贝数 培养基碳源葡萄糖和半乳糖比例优化 | NP | 0.14 | [ | |
藏红花酸 | 强化前体供应:敲除柠檬酸合酶CIT2、苹果酸合酶MLS1 CrtZ和CCD2的融合表达 | 12.43 | NP | [ | |
耶氏解脂 酵母 | 番茄红素 | 引入异戊烯醇同化路径,增强前体IPP/DMAPP供给 增强脂质积累 增加IDI拷贝 | 4200 | 约170 | [ |
β-胡萝卜素 | 敲除KU70,增强同源重组效率 敲除过氧化氢酶编码基因YALI0F30987、脂代谢相关基因LIP1、POX3-6,并作为后续表达盒整合位点 过表达3个拷贝tHMGR、4个拷贝CrtYB和1个拷贝的CrtE、CrtI 过表达2个拷贝的MVA路径蛋白ERG10、ERG13、ERG12、ERG8、ERG19、IDI、ERG20 用受葡萄糖和甘油抑制的启动子ALK1p替换ERG9本源启动子,以实现ERG9下调 氮源抑制发酵 | 3968 | 49.0 | [ | |
β-胡萝卜素 | 敲除脂代谢基因POX2、MFE、POX3、LIP1,增强脂质积累 过表达HMGR、ERG13,增强MVA路径 增加3个拷贝的CrtYB、2个拷贝的CrtI和1个拷贝的CrtE 下调鲨烯合酶的表达 | 4500 | 57.5 | [ | |
β-胡萝卜素 | 选择高度积累脂质的底盘 路径基因启动子的组合适配 发酵条件优化 | 6500 | 89.6 | [ | |
虾青素 | 下调鲨烯合酶的表达 同时表达不同来源的CrtE 筛选CrtZ/CrtW来源,调节表达量 | 285 | 6.0 | [ |
表1 构建类胡萝卜素细胞工厂示例
底盘物种 | 产品 | 工程化手段 | 产量/mg·L-1 | 产率/mg·g DCW-1 | 参考文献 |
---|---|---|---|---|---|
大肠杆菌 | 番茄红素 | 过表达磷酸戊糖途径和TCA循环关键蛋白戊二酸脱氢酶SucAB、琥珀酸脱氢酶SdhABCD和转醛酶B TalB,提高底盘NADPH和ATP的供给 基于RBS序列调节dxs、idi和crt基因簇的转录水平 | 3520 | 50.6 | [ |
β-胡萝卜素 | 将合成路径划分为MEP路径、β-胡萝卜素合成、ATP合成、磷酸戊糖途径、TCA循环5个模块,分别进行工程化优化改造 调节MEP路径模块和β-胡萝卜素合成模块表达强度,过表达dxs和idi 过表达α-酮戊二酸脱氢酶SucAB和琥珀酸脱氢酶SdhABCD,增强TCA循环,提高能量和还原力NADPH供给 过表达转醛酶TalB,增强磷酸戊糖途径,提高NADPH供给 | 2100 | 59.9 | [ | |
β-胡萝卜素 | 敲除葡萄糖-6-磷酸脱氢酶编码基因zwf,减弱碳代谢流进入磷酸戊糖途径;以半乳糖渗透酶系统(galP)替代葡萄糖磷酸转移酶系统(ptsHIcrr)负责葡萄糖转运,减少磷酸烯醇式丙酮酸的消耗,提高MEP路径前体供给 敲除醛还原酶编码基因yjgB,降低NADPH的消耗;过表达nadK,将NADH转化为NADPH,提高NADPH供给 | 2579 | NP | [ | |
β-胡萝卜素 | 引入异源MVA路径 上调dxs、fni、GPPS2,优化内源MEP路径 发酵条件优化,以甘油为碳源 | 3200 | NP | [ | |
玉米黄质 | 应用可调控基因间序列平衡异MVA路径蛋白表达 使用IPP/FPP响应启动子动态调控异源MVA路径基因,避免有毒中间代谢物积累 | 722.5 | 23.2 | [ | |
虾青素 | 组合筛选路径基因启动子,促进番茄红素向β-胡萝卜素转化 OmpF和TrxA标签分别与截短蛋白N端或C端融合,实现CrtW的稳定表达和质膜定位 优化培养基碳源和发酵温度,降低IPTG诱导浓度 基于代谢流分析选择过表达靶点ispD和ispF 引入毒素-抗毒素系统hok/sok,提高表达质粒稳定性 | 432.8 | 7.12 | [ | |
藏红花酸 | 组合筛选CCD、ALD、UGT 体外酶活实验确定UGT功能 | 4.42 | NP | [ | |
酿酒酵母 | 番茄红素 | CrtB序列的筛选 CrtYB与CrtE的定向进化 调节Crt编码基因拷贝数 构建非营养缺陷二倍体细胞 | 1610 | 24.41 | [ |
番茄红素 | 过表达乙醇脱氢酶ADH2、乙醛脱氢酶ALD6和来自沙门氏菌的乙酰-CoA合成酶ACS,提高前体乙酰-CoA的供给 过表达tHMGR,增强MVA路径 过表达NADH激酶POS5,促进NADH向NADPH的转化 增加CrtE和CrtI的拷贝数 敲除YPL062W和EXG1 引入乙酰-CoA羧化酶ACC1突变体S659A/S1157A,过表达磷脂酸磷酸酶PAH1和二酰基甘油酰基转移酶DGA1,增强甘油三酯的合成 过表达脂肪酸脱氢酶OLE1,增加不饱和脂肪酸的含量 敲除Seipin编码基因FLD1,增大脂质体体积 | 2370 | 73.3 | [ | |
番茄红素 | 启动子筛选 过表达tHMGR,增强MVA路径 筛选CrtE、CrtB、CrtI来源,增加CrtE和CrtI的拷贝数 过表达NADH激酶POS5,促进NADH向NADPH的转化 过表达乙醇脱氢酶ADH2、乙醛脱氢酶ALD6和来自沙门氏菌的乙酰-CoA合成酶ACS,提高前体乙酰-CoA的供给 ΔGAL80与ΔGAL1,7,10诱导系统的比较 | 3280 | NP | [ | |
番茄红素 | 敲除YPL062W提高乙酰-CoA供给 组合筛选CrtE、CrtB、CrtI来源 调节CrtI表达水平 选择底盘交配型 工程化非路径相关靶点,即敲除ROX1和过表达INO2 引入异源血红蛋白VHb 连续自循环发酵 | 5880 | NP | [ | |
β-胡萝卜素 | 以GAL系统和HXT1启动子时序调控胡萝卜素和竞争性鲨烯的合成 | 1156 | 20.8 | [ | |
虾青素 | CrtZ和CrtW协同定向进化 温敏调控系统控制关键基因表达 | 235.0 | NP | [ | |
虾青素 | 等离子体诱变与适应性进化交替,促进菌株进化 | 404.8 | NP | [ | |
藏红花酸 | 组合筛选CrtZ、CCD、ALD 发酵温度优化 CCD和ALD的过表达 | 6.278 | NP | [ | |
藏红花酸 | 引入温敏调控系统控制藏红花酸合成,隔离细胞生长和生产 调节CCD2和ALDH的拷贝数 培养基碳源葡萄糖和半乳糖比例优化 | NP | 0.14 | [ | |
藏红花酸 | 强化前体供应:敲除柠檬酸合酶CIT2、苹果酸合酶MLS1 CrtZ和CCD2的融合表达 | 12.43 | NP | [ | |
耶氏解脂 酵母 | 番茄红素 | 引入异戊烯醇同化路径,增强前体IPP/DMAPP供给 增强脂质积累 增加IDI拷贝 | 4200 | 约170 | [ |
β-胡萝卜素 | 敲除KU70,增强同源重组效率 敲除过氧化氢酶编码基因YALI0F30987、脂代谢相关基因LIP1、POX3-6,并作为后续表达盒整合位点 过表达3个拷贝tHMGR、4个拷贝CrtYB和1个拷贝的CrtE、CrtI 过表达2个拷贝的MVA路径蛋白ERG10、ERG13、ERG12、ERG8、ERG19、IDI、ERG20 用受葡萄糖和甘油抑制的启动子ALK1p替换ERG9本源启动子,以实现ERG9下调 氮源抑制发酵 | 3968 | 49.0 | [ | |
β-胡萝卜素 | 敲除脂代谢基因POX2、MFE、POX3、LIP1,增强脂质积累 过表达HMGR、ERG13,增强MVA路径 增加3个拷贝的CrtYB、2个拷贝的CrtI和1个拷贝的CrtE 下调鲨烯合酶的表达 | 4500 | 57.5 | [ | |
β-胡萝卜素 | 选择高度积累脂质的底盘 路径基因启动子的组合适配 发酵条件优化 | 6500 | 89.6 | [ | |
虾青素 | 下调鲨烯合酶的表达 同时表达不同来源的CrtE 筛选CrtZ/CrtW来源,调节表达量 | 285 | 6.0 | [ |
图1 类胡萝卜素生物合成路径MVA—真核微生物和古细菌甲羟戊酸途径;MEP—原核微生物2-C-甲基-D-赤藓糖醇-4-磷酸途径;IUP—非天然异戊烯醇利用途径;IPP—异戊烯焦磷酸;DMAPP—二甲基烯丙基焦磷酸;FPP—法尼基焦磷酸;GGPP—牻牛儿基牻牛儿基焦磷酸;idi—IPP异构酶;ispH—羟甲基丁烯基二磷酸酯(HMBPP)还原酶;CrtE—GGPP合成酶;CrtB—八氢番茄红素合成酶;CrtI—八氢番茄红素脱氢酶;CrtY—番茄红素β-环化酶;CrtZ—β-胡萝卜素羟化酶;CrtW—β-胡萝卜素酮化酶;SQS—鲨烯合成酶;CCD2—类胡萝卜素裂解双加氧酶;ALD8—醛脱氢酶;UGT—糖基转移酶;Ze—玉米黄质环氧化酶;CCS—辣椒红素合酶;实线箭头—直接催化生成;虚线箭头—部分路径信息省略
底盘物种 | 优势 | 产品 | 产量 /mg·L-1 | 产率 /mg·g DCW-1 | 参考 文献 |
---|---|---|---|---|---|
恶臭假单胞菌 (Pseudomonas putida) | 化学品、有机溶剂耐受性高 NADPH再生快 | 玉米黄质 | 239① | NP | [ |
谷氨酸棒杆菌 (Corynebacterium glutamicum) | 可利用多种碳源 天然合成C50类胡萝卜素 | 虾青素 | NP | 1.6 | [ |
毕赤酵母 (Pichia pastoris) | 蛋白表达的优势宿主,翻译后修饰更接近天然蛋白 | 番茄红素 | 714 | 9.319 | [ |
克鲁维酵母 (Kluyveromyces marxianus) | 耐热性好,可在25~52℃的温度下发酵 单位碳源生物量转化率高 | 虾青素 | NP | 9.972 | [ |
集胞藻 (Synechocystis sp.) | 光自养型微生物; 单位碳源生物量转化率高 | 虾青素 | NP | 29.6① | [ |
表2 非常规微生物底盘合成类胡萝卜素示例
底盘物种 | 优势 | 产品 | 产量 /mg·L-1 | 产率 /mg·g DCW-1 | 参考 文献 |
---|---|---|---|---|---|
恶臭假单胞菌 (Pseudomonas putida) | 化学品、有机溶剂耐受性高 NADPH再生快 | 玉米黄质 | 239① | NP | [ |
谷氨酸棒杆菌 (Corynebacterium glutamicum) | 可利用多种碳源 天然合成C50类胡萝卜素 | 虾青素 | NP | 1.6 | [ |
毕赤酵母 (Pichia pastoris) | 蛋白表达的优势宿主,翻译后修饰更接近天然蛋白 | 番茄红素 | 714 | 9.319 | [ |
克鲁维酵母 (Kluyveromyces marxianus) | 耐热性好,可在25~52℃的温度下发酵 单位碳源生物量转化率高 | 虾青素 | NP | 9.972 | [ |
集胞藻 (Synechocystis sp.) | 光自养型微生物; 单位碳源生物量转化率高 | 虾青素 | NP | 29.6① | [ |
1 | TAKAICHI S. Carotenoids in algae: distributions, biosyntheses and functions[J]. Marine Drugs, 2011, 9(6): 1101-1118. |
2 | CARAIL M, CARIS-VEYRAT C. Carotenoid oxidation products: from villain to saviour?[J]. Pure and Applied Chemistry, 2006, 78(8): 1493-1503. |
3 | AULDRIDGE M E, MCCARTY D R, KLEE H J. Plant carotenoid cleavage oxygenases and their apocarotenoid products[J]. Current Opinion in Plant Biology, 2006, 9: 315-321. |
4 | AHRAZEM O, GÓMEZ-GÓMEZ L, RODRIGO M, et al. Carotenoid cleavage oxygenases from microbes and photosynthetic organisms: features and functions[J]. International Journal of Molecular Sciences, 2016, 17(11): 1781. |
5 | MUSSAGY C U, WINTERBURN J, SANTOS-EBINUMA V C, et al. Production and extraction of carotenoids produced by microorganisms[J]. Applied Microbiology and Biotechnology, 2019, 103(3): 1095-1114. |
6 | GHAZI H, USHIO S, GOTO H, et al. Astaxanthin, a carotenoid with potential in human health and nutrition[J]. Journal of Natural Products, 2006, 3(69): 443-449. |
7 | BONGERS M, CHRYSANTHOPOULOS P K, BEHRENDORFF J B, et al. Systems analysis of methylerythritol-phosphate pathway flux in E. coli: insights into the role of oxidative stress and the validity of lycopene as an isoprenoid reporter metabolite[J]. Microbial Cell Factories, 2015, 14: 193. |
8 | WANG J, MENG H, XIONG Z, et al. Identification of novel knockout and up-regulated targets for improving isoprenoid production in E. coli[J]. Biotechnology Letters, 2014, 36(5): 1021-1027. |
9 | OSTROV N, JIMENEZ M, BILLERBECK S, et al. A modular yeast biosensor for low-cost point-of-care pathogen detection[J]. Science Advances, 2017, 3(6): e1603221. |
10 | WATSTEIN D M, MCNERNEY M P, STYCZYNSKI M P. Precise metabolic engineering of carotenoid biosynthesis in Escherichia coli towards a low-cost biosensor[J]. Metabolic Engineering, 2015, 31: 171-180. |
11 | YANG J, GUO L. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways[J]. Microbial Cell Factories, 2014, 13(1): 160. |
12 | LI Y, LIN Z, HUANG C, et al. Metabolic engineering of Escherichia coli using CRISPR-Cas9 meditated genome editing[J]. Metabolic Engineering, 2015, 31: 13-21. |
13 | GAO S, TONG Y, ZHU L, et al. Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production[J]. Metabolic Engineering, 2017, 41: 192-201. |
14 | MA T, SHI B, YE Z, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene[J]. Metabolic Engineering, 2019, 52: 134-142. |
15 | LÓPEZ J, CATALDO V F, PEÑA M, et al. Build your bioprocess on a solid strain-β-carotene production in recombinant Saccharomyces cerevisiae[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 1-9. |
16 | SUN T, MIAO L, LI Q, et al. Production of lycopene by metabolically-engineered Escherichia coli[J]. Biotechnology Letters, 2014, 36(7): 1515-1522. |
17 | SHI B, MA T, YE Z, et al. Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction[J]. Journal of Agricultural and Food Chemistry, 2019, 67(40): 11148-11157. |
18 | WU Y, YAN P, LI Y, et al. Enhancing β-carotene production in Escherichia coli by perturbing central carbon metabolism and improving the NADPH supply[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 585. |
19 | 陶俊, 张上隆, 徐昌杰, 等. 类胡萝卜素合成的相关基因及其基因工程[J]. 生物工程学报, 2002, 18(3): 276-281. |
TAO Jun, ZHANG Shanglong, XU Changjie, et al. Gene and gene engineering of carotenoid biosynthesis[J]. Chinese Journal of Biotechnology, 2002, 18(3): 276-281. | |
20 | LEE W, LEE D G. Lycopene-induced hydroxyl radical causes oxidative DNA damage in Escherichia coli[J]. Journal of Microbiology and Biotechnology, 2014, 24(9): 1232-1237. |
21 | LU Q, LIU J. Enhanced astaxanthin production in Escherichia colivia morphology and oxidative stress engineering[J]. Journal of Agricultural and Food Chemistry, 2019, 67(42): 11703-11709. |
22 | 武陶, 张柏林, 毕昌昊. 细胞膜合成途径模块化调控与形态改造提高大肠杆菌β-胡萝卜素的积累与产量[J]. 生物工程学报, 2018, 34(5): 703-711. |
WU Tao, ZHANG Bolin, BI Changhao. Improving β-carotene production in Escherichia coli by modularized regulation of the membrane synthetic pathway and morphology engineering[J]. Chinese Journal of Biotechnology, 2018, 34(5): 703-711. | |
23 | ZHAO J, LI Q, SUN T, et al. Engineering central metabolic modules of Escherichia coli for improving β-carotene production[J]. Metabolic Engineering, 2013, 17: 42-50. |
24 | SHEN H, CHENG B, ZHANG Y, et al. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis[J]. Metabolic Engineering, 2016, 38: 180-190. |
25 | PARK S Y, BINKLEY R M, KIM W J, et al. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity[J]. Metabolic Engineering, 2018(49): 105-115. |
26 | WANG W, HE P, ZHAO D, et al. Construction of Escherichia coli cell factories for crocin biosynthesis[J]. Microbial Cell Factories, 2019, 18(1):120. |
27 | XIE W, LV X, YE L, et al. Construction of lycopene-overproducing Saccharomyces cerevisiae by combining directed evolution and metabolic engineering[J]. Metabolic Engineering, 2015, 30: 69-78. |
28 | WANG Z, LI X, YU C, et al. Continuous self-cycling fermentation leads to economical lycopene production by Saccharomyces cerevisiae[J]. Frontiers in Bioengineering and Biotechnology, 2020(8): 420. |
29 | XIE W, YE L, LV X, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2015, 28: 8-18. |
30 | ZHOU P, LI M, SHEN B, et al. Directed coevolution of β-carotene ketolase and hydroxylase and its application in temperature-regulated biosynthesis of astaxanthin[J]. Journal of Agricultural and Food Chemistry, 2019, 67(4): 1072-1080. |
31 | JIANG G, YANG Z, WANG Y, et al. Enhanced astaxanthin production in yeast via combined mutagenesis and evolution[J]. Biochemical Engineering Journal, 2020, 156: 107519. |
32 | CHAI F, WANG Y, MEI X, et al. Heterologous biosynthesis and manipulation of crocetin in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2017, 16(1): 54. |
33 | LIU T, DONG C, QI M, et al. Construction of a stable and temperature-responsive yeast cell factory for crocetin biosynthesis using CRISPR-Cas9[J]. Frontiers in Bioengineering and Biotechnology, 2020(8): 653. |
34 | SONG T, WU N, WANG C, et al. Crocetin overproduction in engineered Saccharomyces cerevisiaevia tuning key enzymes coupled with precursor engineering[J]. Frontiers in Bioengineering and Biotechnology, 2020(8): 578005. |
35 | LUO Z, LIU N, LAZAR Z, et al. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity[J]. Metabolic Engineering, 2020, 61: 344-351. |
36 | ZHANG X, WANG D, CHEN J, et al. Metabolic engineering of β-carotene biosynthesis in Yarrowia lipolytica[J]. Biotechnology Letters, 2020, 42(6): 945-956. |
37 | LARROUDE M, CELINSKA E, BACK A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene[J]. Biotechnology and Bioengineering, 2018, 115(2): 464-472. |
38 | TRAMONTIN L R R, KILDEGAARD K R, SUDARSAN S, et al. Enhancement of astaxanthin biosynthesis in oleaginous yeast Yarrowia lipolyticavia microalgal pathway[J]. Microorganisms, 2019, 7(10): 472. |
39 | ZELCBUCH L, ANTONOVSKY N, BAR-EVEN A, et al. Spanning high-dimensional expression space using ribosome-binding site combinatorics[J]. Nucleic Acids Research, 2013, 41(9): e98. |
40 | ÖZAYDıN B, BURD H, LEE T S, et al. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production[J]. Metabolic Engineering, 2013, 15: 174-183. |
41 | OLSON M L, JOHNSON J, CARSWELL W F, et al. Characterization of an evolved carotenoids hyper-producer of Saccharomyces cerevisiae through bioreactor parameter optimization and Raman spectroscopy[J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43(10): 1355-1363. |
42 | REYES L H, GOMEZ J M, KAO K C. Improving carotenoids production in yeast via adaptive laboratory evolution[J]. Metabolic Engineering, 2014, 21: 26-33. |
43 | YANG C, GAO X, JIANG Y, et al. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli[J]. Metabolic Engineering, 2016, 37: 79-91. |
44 | YOSHIDA R, YOSHIMURA T, HEMMI H. Reconstruction of the “archaeal” mevalonate pathway from the methanogenic archaeon Methanosarcina mazei in Escherichia coli cells[J]. Applied and Environmental Microbiology, 2020, 86(6): e02889. |
45 | CHATZIVASILEIOU A O, WARD V, EDGAR S M, et al. Two-step pathway for isoprenoid synthesis[J]. Proc. Natl. Acad. Sci. USA, 2019, 116(2): 506-511. |
46 | CLOMBURG J M, QIAN S, TAN Z, et al. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 26(166): 12810-12815. |
47 | CHEN Y, XIAO W, WANG Y, et al. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering[J]. Microbial Cell Factories, 2016, 15(1): 113. |
48 | KILDEGAARD K R, ADIEGO-PÉREZ B, DOMÉNECH BELDA D, et al. Engineering of Yarrowia lipolytica for production of astaxanthin[J]. Synthetic and Systems Biotechnology, 2017, 2(4): 287-294. |
49 | LIANG N, CHEN C, WANG Y, et al. Exploring catalysis specificity of phytoene dehydrogenase CrtI in carotenoid synthesis[J]. ACS Synthetic Biology, 2020, 9(7): 1753-1762. |
50 | LU Q, BU Y, LIU J. Metabolic engineering of Escherichia coli for producing astaxanthin as the predominant carotenoid[J]. Marine Drugs, 2017, 15(10): 296. |
51 | HENKE N A, HEIDER S A, PETERS-WENDISCH P, et al. Production of the marine carotenoid astaxanthin by metabolically engineered Corynebacterium glutamicum[J]. Marine Drugs, 2016, 14(7): 124. |
52 | WANG R, GU X, YAO M, et al. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae[J]. Frontiers of Chemical Science and Engineering, 2017, 11(1): 89-99. |
53 | ZHOU P, XIE W, LI A, et al. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae[J]. Enzyme and Microbial Technology, 2017, 100: 28-36. |
54 | SWEETLOVE L J, FERNIE A R. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation[J]. Nature Communications, 2018, 9(1): 2136. |
55 | KANG W, MA T, LIU M, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux[J]. Nature Communications, 2019, 10(1): 4248. |
56 | XU X, TIAN L, TANG S, et al. Design and tailoring of an artificial DNA scaffolding system for efficient lycopene synthesis using zinc-finger-guided assembly[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(2): 209-222. |
57 | YE L, ZHU X, WU T, et al. Optimizing the localization of astaxanthin enzymes for improved productivity[J]. Biotechnology for Biofuels, 2018, 11(1): 278. |
58 | QU J, CAO S, WEI Q, et al. Synthetic multienzyme complexes, catalytic nanomachineries for cascade biosynthesis in vivo[J]. ACS Nano, 2019, 13(9): 9895-9906. |
59 | NOGUEIRA M, ENFISSI E M A, WELSCH R, et al. Construction of a fusion enzyme for astaxanthin formation and its characterisation in microbial and plant hosts: a new tool for engineering ketocarotenoids[J]. Metabolic Engineering, 2019(52): 243-252. |
60 | ZHANG X, NIE M, CHEN J, et al. Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica[J]. Journal of Biotechnology, 2019, 289: 46-54. |
61 | WU X, LI B, ZHANG W, et al. Genome-wide landscape of position effects on heterogeneous gene expression in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2017, 10(1): 189. |
62 | LARROUDE M, CELINSKA E, BACK A, et al. A synthetic biology approach to transform Yarrowia lipolytica into a competitive biotechnological producer of β-carotene[J]. Biotechnology and Bioengineering, 2018, 115(2): 464-472. |
63 | SU B, SONG D, YANG F, et al. Engineering a growth-phase-dependent biosynthetic pathway for carotenoid production in Saccharomyces cerevisiae[J]. Journal of Industrial Microbiology & Biotechnology, 2020, 47(4/5): 383-393. |
64 | XU J, XU X, XU Q, et al. Efficient production of lycopene by engineered E. Coli strains harboring different types of plasmids[J]. Bioprocess and Biosystems Engineering, 2018, 41(4): 489-499. |
65 | YE L, HE P, LI Q, et al. Type Ⅱs restriction based combinatory modulation technique for metabolic pathway optimization[J]. Microbial Cell Factories, 2017, 16(1): 47. |
66 | COUSSEMENT P, BAUWENS D, MAERTENS J, et al. Direct combinatorial pathway optimization[J]. ACS Synthetic Biology, 2016, 6(2): 224-232. |
67 | LIAN J, JIN R, ZHAO H. Construction of plasmids with tunable copy numbers in Saccharomyces cerevisiae and their applications in pathway optimization and multiplex genome integration[J]. Biotechnology and Bioengineering, 2016, 113(11): 2462-2473. |
68 | KANG C W, LIM H G, YANG J, et al. Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number[J]. Metabolic Engineering, 2018, 48: 121-128. |
69 | YAMADA R, YAMAUCHI A, ANDO Y, et al. Modulation of gene expression by cocktail δ-integration to improve carotenoid production in Saccharomyces cerevisiae[J]. Bioresource Technology, 2018, 268: 616-621. |
70 | RONDA C, MAURY J, JAKOČIUNAS T, et al. CrEdit: CRISPR mediated multi-loci gene integration in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2015, 14(1): 97. |
71 | HOU S, QIN Q, DAI J. Wicket: a versatile tool for the integration and optimization of exogenous pathways in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2018, 7(3): 782-788. |
72 | CUI Z, JIANG X, ZHENG H, et al. Homology-independent genome integration enables rapid library construction for enzyme expression and pathway optimization in Yarrowia lipolytica[J]. Biotechnology Bioengineering, 2019, 2(116): 354-363. |
73 | VOGL T, KICKENWEIZ T, PITZER J, et al. Engineered bidirectional promoters enable rapid multi-gene co-expression optimization[J]. Nature Communications, 2018, 9(1): 3589. |
74 | WU Z, ZHAO D, LI S, et al. Combinatorial modulation of initial codons for improved zeaxanthin synthetic pathway efficiency in Escherichia coli[J]. Microbiology Open, 2019, 8(12): e930. |
75 | JIN W, XU X, JIANG L, et al. Putative carotenoid genes expressed under the regulation of Shine-Dalgarno regions in Escherichia coli for efficient lycopene production[J]. Biotechnology Letters, 2015, 37(11): 2303-2310. |
76 | PFLEGER B F, PITERA D J, SMOLKE C D, et al. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes[J]. Nature Biotechnology, 2006, 24(8): 1027-1032. |
77 | LI X, TIAN G, SHEN H, et al. Metabolic engineering of Escherichia coli to produce zeaxanthin[J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(4): 627-636. |
78 | BLAZECK J, LIU L, REDDEN H, et al. Tuning gene expression in Yarrowia lipolytica by a hybrid promoter approach[J]. Applied and Environmental Microbiology, 2011, 77(22): 7905-7914. |
79 | BLAZECK J, GARG R, REED B, et al. Controlling promoter strength and regulation in Saccharomyces cerevisiae using synthetic hybrid promoters[J]. Biotechnology and Bioengineering, 2012, 109(11): 2884-2895. |
80 | NASERI G, BEHREND J, RIEPER L, et al. COMPASS for rapid combinatorial optimization of biochemical pathways based on artificial transcription factors[J]. Nature Communications, 2019, 10(1): 2615. |
81 | CUPERUS J T, LO R S, SHUMAKER L, et al. A tetO toolkit to alter expression of genes in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2015, 4(7): 842-852. |
82 | GUO Y, DONG J, ZHOU T, et al. YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae[J]. Nucleic Acids Research, 2015, 43(13): e88. |
83 | WU Y, ZHU R, MITCHELL L A, et al. In vitro DNA SCRaMbLE[J]. Nature Communications, 2018, 9(1): 1935. |
84 | LIU W, LUO Z, WANG Y, et al. Rapid pathway prototyping and engineering using in vitro and in vivo synthetic genome SCRaMbLE-in methods[J]. Nature Communications, 2018, 9(1): 1936. |
85 | QI D, JIN J, LIU D, et al. In vitro and in vivo recombination of heterologous modules for improving biosynthesis of astaxanthin in yeast[J]. Microbial Cell Factories, 2020, 19(1): 103. |
86 | AJIKUMAR P K, XIAO W H, TYO K E J, et al. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli[J]. Science, 2010, 330(6000): 70-74. |
87 | ZHANG C, SEOW V Y, CHEN X, et al. Multidimensional heuristic process for high-yield production of astaxanthin and fragrance molecules in Escherichia coli[J]. Nature Communications, 2018, 9(1): 1858. |
88 | LI N, HAN Z, O'DONNELL T J, et al. Production and excretion of astaxanthin by engineered Yarrowia lipolytica using plant oil as both the carbon source and the biocompatible extractant[J]. Appl. Microbiol. Biotechnol., 2020, 104(16): 6977-6989. |
89 | GOTO S, KOGURE K, ABE K, et al. Efficient radical trapping at the surface and inside the phospholipid membrane is responsible for highly potent antiperoxidative activity of the carotenoid astaxanthin[J]. Biochim. Biophys. Acta, 2001, 1512(2): 251-258. |
90 | VERWAAL R, JIANG Y, WANG J, et al. Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response[J]. Yeast, 2010, 27(12): 983-998. |
91 | ZHOU P, XIE W, YAO Z, et al. Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch[J]. Biotechnology and Bioengineering, 2018, 115(5): 1321-1330. |
92 | DOSHI R, NGUYEN T, CHANG G. Transporter-mediated biofuel secretion[J]. Proceedings of the National Academy of Sciences, 2013, 110(19): 7642-7647. |
93 | WU T, LI S, YE L, et al. Engineering an artificial membrane vesicle trafficking system (AMVTS) for the excretion of β-carotene in Escherichia coli[J]. ACS Synthetic Biology, 2019, 8(5): 1037-1046. |
94 | WU T, YE L, ZHAO D, et al. Membrane engineering: a novel strategy to enhance the production and accumulation of β-carotene in Escherichia coli[J]. Metabolic Engineering, 2017, 43(A): 85-91. |
95 | WU T, YE L, ZHAO D, et al. Engineering membrane morphology and manipulating synthesis for increased lycopene accumulation in Escherichia coli cell factories[J]. Biotech, 2018, 8(6): 269. |
96 | LIU Y, LOW Z J, MA X, et al. Using biopolymer bodies for encapsulation of hydrophobic products in bacterium[J]. Metabolic Engineering, 2020, 61: 206-214. |
97 | CHEN Y, WANG Y, LIU M, et al. Primary and secondary metabolic effects of a key gene deletion (ΔYPL062W) in metabolically engineered terpenoid-producing Saccharomyces cerevisiae[J]. Appl. Environ. Microbiol., 2019, 85(7): e01990. |
98 | WANG M, LIU G, LIU H, et al. Engineering global transcription to tune lipophilic properties in Yarrowia lipolytica[J]. Biotechnology for Biofuels, 2018, 11(1): 115. |
99 | HUANG L, PU Y, YANG X, et al. Engineering of global regulator cAMP receptor protein (CRP) in Escherichia coli for improved lycopene production[J]. Journal of Biotechnology, 2015, 199: 55-61. |
100 | 张雪, 张晓菲, 王立言, 等. 常压室温等离子体生物诱变育种及其应用研究进展[J]. 化工学报, 2014, 65(7): 2676-2684. |
ZHANG Xue, ZHANG Xiaofei, WANG Liyan, et al. Recent progress on atmospheric and room temperature plasma mutation breeding technology and its applications[J]. CIESC Journal, 2014, 65(7): 2676-2684. | |
101 | JIN J, WANG Y, YAO M, et al. Astaxanthin overproduction in yeast by strain engineering and new gene target uncovering[J]. Biotechnology for Biofuels, 2018, 11(1): 215-230. |
102 | WANG H H, ISAACS F J, CARR P A, et al. Programming cells by multiplex genome engineering and accelerated evolution[J]. Nature, 2009, 460(7257): 894-898. |
103 | BARBIERI E M, MUIR P, AKHUETIEONI B O, et al. Precise editing at DNA replication forks enables multiplex genome engineering in eukaryotes[J]. Cell, 2017, 171(6): 1453-1467. |
104 | LI J, SHEN J, SUN Z, et al. Discovery of several novel targets that enhance β-carotene production in Saccharomyces cerevisiae[J]. Frontiers in Microbiology, 2017, 8: 1116. |
105 | BEUTTLER H, HOFFMANN J, JESKE M, et al. Biosynthesis of zeaxanthin in recombinant Pseudomonas putida[J]. Applied Microbiology and Biotechnology, 2011, 89(4): 1137-1147. |
106 | LIAN J, HAMEDIRAD M, HU S, et al. Combinatorial metabolic engineering using an orthogonal tri-functional CRISPR system[J]. Nature Communications, 2017, 8(1): 1688. |
107 | LIU D, LIU H, QI H, et al. Constructing yeast chimeric pathways to boost lipophilic terpene synthesis[J]. ACS Synthetic Biology, 2019, 8(4): 724-733. |
108 | JIA B, WU Y, LI B Z, et al. Precise control of SCRaMbLE in synthetic haploid and diploid yeast[J]. Nature Communications, 2018, 9(1): 1933. |
109 | WANG J, XIE Z X, MA Y, et al. Ring synthetic chromosome V SCRaMbLE[J]. Nature Communications, 2018, 9(1): 3783. |
110 | SUN X, REN L, BI Z, et al. Development of a cooperative two-factor adaptive-evolution method to enhance lipid production and prevent lipid peroxidation in Schizochytrium sp.[J]. Biotechnology for Biofuels, 2018, 11(1): 65. |
111 | SUN X, REN L, JI X, et al. Adaptive evolution of Schizochytrium sp. by continuous high oxygen stimulations to enhance docosahexaenoic acid synthesis[J]. Bioresource Technology, 2016, 211: 374-381. |
112 | TILLICH U M, WOLTER N, FRANKE P, et al. Screening and genetic characterization of thermo-tolerant Synechocystis sp.PCC6803 strains created by adaptive evolution[J]. BMC Biotechnology, 2014, 14(1): 66. |
113 | PERRINEAU M, ZELZION E, GROSS J, et al. Evolution of salt tolerance in a laboratory reared population of Chlamydomonas reinhardtii[J]. Environmental Microbiology, 2014, 16(6): 1755-1766. |
114 | LIN Y, CHANG J, LIN H, et al. Metabolic engineering a yeast to produce astaxanthin[J]. Bioresource Technology, 2017, 245: 899-905. |
115 | HEIDER S A E, WOLF N, HOFEMEIER A, et al. Optimization of the IPP precursor supply for the production of lycopene, decaprenoxanthin and astaxanthin by Corynebacterium glutamicum[J]. Frontiers in Bioengineering and Biotechnology, 2014, 2: 28. |
116 | ZHANG X, WANG D, DUAN Y, et al. Production of lycopene by metabolically engineered Pichia pastoris[J]. Biosci. Biotechnol. Biochem., 2020, 84(3): 463-470. |
117 | HASUNUMA T, TAKAKI A, MATSUDA M, et al. Single-stage astaxanthin production enhances the nonmevalonate pathway and photosynthetic central metabolism in Synechococcus sp. PCC 7002[J]. ACS Synthetic Biology, 2019, 8(12): 2701-2709. |
118 | YE X, ALBABILI S, KLOTI A, et al. Engineering the provitamin a (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm[J]. Science, 2000, 287(5451): 303-305. |
119 | PAINE J A, SHIPTON C A, CHAGGAR S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin a content[J]. Nature Biotechnology, 2005, 23(4): 482-487. |
120 | ZHU Q, ZENG D, YU S, et al. From golden rice to aSTARice: bioengineering astaxanthin biosynthesis in rice endosperm[J]. Molecular Plant, 2018, 11(12): 1440-1448. |
121 | DIAO J, SONG X, ZHANG L, et al. Tailoring cyanobacteria as a new platform for highly efficient synthesis of astaxanthin[J]. Metabolic Engineering, 2020, 61: 275-287. |
122 | UMENO D, TOBIAS A V, ARNOLD F H. Diversifying carotenoid biosynthetic pathways by directed evolution[J]. Microbiol. Mol. Biol. Rev., 2005, 69(1): 51-78. |
123 | FURUBAYASHI M, IKEZUMI M, TAKAICHI S, et al. A highly selective biosynthetic pathway to non-natural C50 carotenoids assembled from moderately selective enzymes[J]. Nature Communications, 2015, 6(1): 7534. |
124 | LI L, FURUBAYASHI M, WANG S, et al. Genetically engineered biosynthetic pathways for nonnatural C60 carotenoids using C5-elongases and C50-cyclases in Escherichia coli[J]. Scientific Reports, 2019, 9: 2982. |
125 | DRUMMOND L, KSCHOWAK M J, BREITENBACH J, et al. Expanding the isoprenoid building block repertoire with an IPP methyltransferase from Streptomyces monomycini[J]. ACS Synthetic Biology, 2019, 8(6): 1303-1313. |
126 | LI L, FURUBAYASHI M, OTANI Y, et al. Nonnatural biosynthetic pathway for 2-hydroxylated xanthophylls with C50-carotenoid backbone[J]. Journal of Bioscience and Bioengineering, 2019, 128(4): 438-444. |
127 | ZENG W, GUO L, XU S, et al. High-throughput screening technology in industrial biotechnology[J]. Trends in Biotechnology, 2020, 38(8): 888-906. |
128 | EXLEY K, REYNOLDS C R, SUCKLING L, et al. Utilising datasheets for the informed automated design and build of a synthetic metabolic pathway[J]. Journal of Biological Engineering, 2019, 8(13): 1-10. |
129 | ZHOU Y, LI G, DONG J, et al. MiYA, an efficient machine-learning workflow in conjunction with the YeastFab assembly strategy for combinatorial optimization of heterologous metabolic pathways in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2018, 47: 294-302. |
130 | HAMEDIRAD M, CHAO R, WEISBERG S, et al. Towards a fully automated algorithm driven platform for biosystems design[J]. Nature Communications, 2019, 10(1): 5150. |
[1] | 高聪, 陈城虎, 陈修来, 刘立明. 代谢工程改造微生物合成生物基单体的进展与挑战[J]. 化工进展, 2023, 42(8): 4123-4135. |
[2] | 郭峰, 张尚杰, 蒋羽佳, 姜万奎, 信丰学, 章文明, 姜岷. 一碳资源在酵母中的利用与转化[J]. 化工进展, 2023, 42(1): 30-39. |
[3] | 陶雨萱, 张尚杰, 景艺文, 信丰学, 董维亮, 周杰, 蒋羽佳, 章文明, 姜岷. 甲基营养型大肠杆菌构建策略的研究进展[J]. 化工进展, 2021, 40(7): 3932-3941. |
[4] | 郭亮, 高聪, 张丽, 陈修来, 刘立明. 人工代谢路径适配性的研究进展[J]. 化工进展, 2021, 40(3): 1252-1261. |
[5] | 刘卫兵, 叶邦策. 放线菌聚酮类化合物的合成生物学研究及生物制造[J]. 化工进展, 2021, 40(3): 1226-1237. |
[6] | 马悦原, 陈金春, 陈国强. 嗜盐微生物底盘细胞:应用和前景[J]. 化工进展, 2021, 40(3): 1178-1186. |
[7] | 孙文涛, 李春. 微生物合成植物天然产物的细胞工厂设计与构建[J]. 化工进展, 2021, 40(3): 1202-1214. |
[8] | 高聪, 郭亮, 胡贵鹏, 陈修来, 刘立明. 微生物细胞工厂碳流调控进展[J]. 化工进展, 2021, 40(12): 6807-6817. |
[9] | 王琛, 赵猛, 丁明珠, 王颖, 姚明东, 肖文海. 生物支架系统在合成生物学中的应用[J]. 化工进展, 2020, 39(11): 4557-4567. |
[10] | 常鹏程, 于洋, 王颖, 李春. 酿酒酵母高效合成萜类化合物的组合调控策略[J]. 化工进展, 2019, 38(01): 598-605. |
[11] | 张正晖, 曹铭铭, 李珺, 李春, 刘护. 微生物高效分泌蛋白质的策略与应用[J]. 化工进展, 2018, 37(08): 3129-3137. |
[12] | 樊婧婧, 赵雨佳, 王晨, 李春, 周晓宏. 酿酒酵母乙酰辅酶A精细调控合成萜类化合物研究进展[J]. 化工进展, 2018, 37(07): 2773-2779. |
[13] | 杨坤, 王颖, 李春. 细胞转运蛋白及其工程化应用[J]. 化工进展, 2017, 36(04): 1410-1417. |
[14] | 刘丁玉, 孟娇, 王智文, 陈涛, 赵学明. 多元模块工程在代谢工程中的应用与研究进展[J]. 化工进展, 2016, 35(11): 3619-3626. |
[15] | 肖文海, 周嗣杰, 王颖, 元英进. 如何工程化生物学[J]. 化工进展, 2016, 35(06): 1827-1836. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |