1 |
ARISTOV Y I, TOKAREV M M, GORDEEVA L G, et al. New composite sorbents for solar-driven thechnology of fresh water production from the atmosphere[J]. Solar Energy, 1999, 66(2): 165-168.
|
2 |
JI J G, WANG R Z, LI L X. New composite adsorbent for solar-driven fresh water production from the atmosphere[J]. Desalination, 2006, 212(1/2/3): 176-182.
|
3 |
SRIVASTAVA S, YADAV A. Water generation from atmospheric air by using composite desiccant material through fixed focus concentrating solar thermal power[J]. Solar Energy, 2018, 169: 302-315.
|
4 |
TU Y D, WANG R Z, ZHANG Y N, et al. Progress and expectation of atmospheric water harvesting[J]. Joule, 2018, 2(8): 1452-1475.
|
5 |
KIM H, YANG S, RAO S R, et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight[J]. Science, 2017, 356(6336): 430-432.
|
6 |
耿浩清, 石成君, 苏亚欣. 空气取水技术的研究进展[J]. 化工进展, 2011, 30(8): 1664-1669.
|
|
GENG H Q, SHI C J, SU Y X. A review on water extraction from air[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1664-1669.
|
7 |
刘金亚, 王佳韵, 王丽伟, 等. 一种吸附式空气取水装置的性能实验[J]. 化工学报, 2016, 67(S2): 46-50.
|
|
LIU J Y, WANG J Y, WANG L W, et al. Performance test of sorption air-to-water device[J]. CIESC Journal, 2016, 67(S2): 46-50.
|
8 |
WANG B, XIE L H, WANG X, et al. Applications of metal-organic frameworks for green energy and environment: new advances in adsorptive gas separation, storage and removal[J]. Green Energy & Environment, 2018, 3(3): 191-228.
|
9 |
李倩文, 赵惠忠, 王朝阳, 等. MIL-101(Cr)开式吸附性能实验[J]. 化工进展, 2019, 38(8): 3788-3794.
|
|
LI Q W, ZHAO H Z, WANG Z Y, et al. Research on the open adsorption property of MIL-101(Cr)[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3788-3794.
|
10 |
SHARMA P, SONG J S, HAN M H, et al. GIS-NaP1 zeolite microspheres as potential water adsorption material: influence of initial silica concentration on adsorptive and physical/topological properties[J]. Scientific Reports, 2016, 6(1): 22734.
|
11 |
LI R Y, SHI Y, ALSAEDI M, et al. Hybrid hydrogel with high water vapor harvesting capacity for deployable solar-driven atmospheric water generator[J]. Environmental Science & Technology, 2018, 52(19): 11367-11377.
|
12 |
HE Y L, XIE T. Advances of thermal conductivity models of nanoscale silica aerogel insulation material[J]. Applied Thermal Engineering, 2015, 81: 28-50.
|
13 |
CHEN C H, HUANG P C, YANG T H, et al. Polymer/alumina composite desiccant combined with periodic total heat exchangers for air-conditioning systems[J]. International Journal of Refrigeration, 2016, 67: 10-21.
|
14 |
ARISTOV Y I. Novel materials for adsorptive heat pumping and storage: screening and nanotailoring of sorption properties[J]. Journal of Chemical Engineering of Japan, 2007, 40(13): 1242-1251.
|
15 |
ARISTOV Y I, RESTUCCIA G, CACCIOLA G, et al. A family of new working materials for solid sorption air conditioning systems[J]. Applied Thermal Engineering, 2002, 22(2): 191-204.
|
16 |
XU S Z, WANG R Z, WANG L W, et al. Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage[J]. Energy, 2019, 167: 889-901.
|
17 |
刘业凤, 王如竹. 空气中取水用的新型复合吸附剂的吸附和解吸性能[J]. 化工进展, 2002, 21(10): 733-735, 752.
|
|
LIU Y F, WANG R Z Adsorption and desorption properies of new composite adsorbent to extract water from atmosphere[J]. Chemical Industry and Engineering Progress, 2002, 21(10): 733-735, 752.
|
18 |
SARBU I, SEBARCHIEVICI C. General review of solar-powered closed sorption refrigeration systems[J]. Energy Conversion and Management, 2015, 105: 403-422.
|
19 |
ZHANG Y N, WANG R Z, LI T X. Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage[J]. Energy, 2018, 156: 240-249.
|
20 |
CHAN K C, CHAO C Y H, SZE-TO G N, et al. Performance predictions for a new zeolite 13X/CaCl2 composite adsorbent for adsorption cooling systems[J]. International Journal of Heat and Mass Transfer, 2012, 55(11/12): 3214-3224.
|
21 |
TAN B Q, LUO Y S, LIANG X H, et al. Composite salt in MIL-101(Cr) with high water uptake and fast adsorption kinetics for adsorption heat pumps[J]. Microporous and Mesoporous Materials, 2019, 286: 141-148.
|
22 |
CORTĔS F B, CHEJNE F, CARRASCO-MARÍN F, et al. Water sorption on silica- and zeolite-supported hygroscopic salts for cooling system applications[J]. Energy Conversion and Management, 2012, 53(1): 219-223.
|
23 |
WANG Q, XIE Y Y, DING B, et al. Structure and hydration state characterizations of MgSO4-zeolite 13X composite materials for long-term thermochemical heat storage[J]. Solar Energy Materials and Solar Cells, 2019, 200: 110047.
|
24 |
JIANG L, ROSKILLY A P. Thermal conductivity, permeability and reaction characteristic enhancement of ammonia solid sorbents: a review[J]. International Journal of Heat and Mass Transfer, 2019, 130: 1206-1225.
|
25 |
ZHAO Y J, WANG L W, WANG R Z, et al. Study on consolidated activated carbon: choice of optimal adsorbent for refrigeration application[J]. International Journal of Heat and Mass Transfer, 2013, 67: 867-876.
|
26 |
许嘉兴, 晁京伟, 李廷贤, 等. 膨胀石墨/有机金属骨架复合吸附材料的制备及性能研究[J]. 化工学报, 2018, 69(S2): 492-499.
|
|
XU J X, CHAO J W, LI T Y, et al. Preparation and properties of expand graphite/ organic mental frameworks composite adsorption material[J]. CIESC Journal, 2018, 69(S2): 492-499.
|
27 |
STREZA M, GRAD O, LAZAR D, et al. Hybrid MOFs-graphene composites: correlation between thermal transport and kinetics of hydrogen adsorption[J]. International Journal of Heat and Mass Transfer, 2019, 143: 118539.
|
28 |
SZCZESNIAK B, CHOMA J. Graphene-containing microporous composites for selective CO2 adsorption[J]. Microporous and Mesoporous Materials, 2020, 292: 109761.
|
29 |
LI Q, GUO Y, LI W, et al. Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite[J]. Chemistry of Materials, 2014, 26(15): 4459-4465.
|
30 |
赵惠忠, 程俊峰, 唐祥虎, 等. 多壁碳纳米管嵌入13X/MgCl2复合吸附剂的性能实验[J]. 化工学报, 2017, 68(5): 1860-1865.
|
|
ZHAO H Z, CHENG J F, TANG X H, et al. Performance experiments of the MWCNT embedded 13X/MgCl2 composite adsorbents[J]. CIESC Journal, 2017, 68(5): 1860-1865.
|
31 |
CHAN K C, CHAO C Y H, WU C L. Measurement of properties and performance prediction of the new MWCNT-embedded 13X/CaCl2 composite adsorbents[J]. International Journal of Heat and Mass Transfer, 2015, 89: 308-319.
|
32 |
XU J X, LI T X, CHAO J W, et al. High energy-density multi-form thermochemical energy storage based on multi-step sorption processes[J]. Energy, 2019, 185: 1131-1142.
|
33 |
ARISTOV Y I. Selective water sorbents: a new family of materials for sorption cooling/heating: state-of-the art[C]// Proc. V Minsk international seminar on heat pipes, heat humps, and refrigerators. Minsk, Belarus: Boreskov Institute of Catalysis, Russian Academy of Science, 2003: 379-390.
|
34 |
YAN T, LI T X, WANG R Z, et al. Experimental investigation on the ammonia adsorption and heat transfer characteristics of the packed multi-walled carbon nanotubes[J]. Applied Thermal Engineering, 2015, 77: 20-29.
|
35 |
MICHAEL S, ROWY N, MATAT B, et al. Thermally conductive graphene-polymer composites: size, percolation, and synergy effects[J]. Chemistry of Materials, 2015, 27: 2100-2106.
|