化工进展 ›› 2021, Vol. 40 ›› Issue (12): 6729-6737.DOI: 10.16085/j.issn.1000-6613.2021-0229
收稿日期:
2021-01-31
修回日期:
2021-04-20
出版日期:
2021-12-05
发布日期:
2021-12-21
通讯作者:
王亭杰
作者简介:
马冠香(1987—),博士,研究方向为纳米复合材料。E-mail: MA Guanxiang(), YANG Ling, WANG Ting-jie()
Received:
2021-01-31
Revised:
2021-04-20
Online:
2021-12-05
Published:
2021-12-21
Contact:
WANG Ting-jie
摘要:
纳米SiO2颗粒粒径小、比表面积大,广泛用做填料、涂料、催化剂等。由于纳米SiO2颗粒表面能高、亲水性强、易团聚、在聚合物基体中的分散性差,需要对其表面修饰改性。多巴胺(DA)分子具有类似贻贝分泌的黏附蛋白的结构单元儿茶酚和活性基团氨基,在碱性条件下,通过氧化自聚可在多种材料表面沉积,形成富含活性基团的聚多巴胺(PDA)包覆层,可进行二次修饰,是近期发展的一种新型表面修饰方法。本文针对纳米SiO2颗粒表面的PDA功能化修饰,分析了该修饰方法的工艺特点及优势,阐述了SiO2@PDA纳米颗粒及SiO2/PDA共聚复合颗粒的制备路线及应用,总结了SiO2@PDA颗粒表面二次功能化修饰的研究进展。分析表明,SiO2@PDA表面易于接枝功能化聚合物分子,并可负载功能纳米颗粒,有利于拓展SiO2纳米颗粒的多功能应用。关于多巴胺与SiO2纳米颗粒的表面反应机制、沉积动力学、聚合机理等仍需进一步研究。
中图分类号:
马冠香, 杨令, 王亭杰. 聚多巴胺修饰纳米SiO2颗粒[J]. 化工进展, 2021, 40(12): 6729-6737.
MA Guanxiang, YANG Ling, WANG Ting-jie. Surface modification of silica nanoparticles using polydopamine[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6729-6737.
1 | CIRIMINNA R, FIDALGO A, PANDARUS V, et al. The sol-gel route to advanced silica-based materials and recent applications[J]. Chemical Reviews, 2013, 113(8): 6592-6620. |
2 | LEE M-H, DEKA J R, CHENG C-J, et al. Synthesis of highly dispersed ultra-small cobalt nanoparticles within the cage-type mesopores of 3D cubic mesoporous silica via double agent eduction method for catalytic hydrogen generation[J]. Applied Surface Science, 2019, 470: 764-772. |
3 | SHEN Z C, WEN H J, ZHOU H J, et al. Coordination bonding-based polydopamine-modified mesoporous silica for sustained avermectin release[J]. Materials Science & Engineering C: Materials for Biological Applications, 2019, 105: 110073. |
4 | ALARCOS N, COHEN B, ZIÓŁEK M, et al. Photochemistry and photophysics in silica-based materials: ultrafast and single molecule spectroscopy observation[J]. Chemical Reviews, 2017, 117(22): 13639-13720. |
5 | ZOU H, WU S S, SHEN J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications[J]. Chemical Reviews, 2008, 108(9): 3893-3957. |
6 | RIMOLA A, COSTA D, SODUPE M, et al. Silica surface features and their role in the adsorption of biomolecules: computational modeling and experiments[J]. Chemical Reviews, 2013, 113(6): 4216-4313. |
7 | WAITE J H. Mussel power[J]. Nature Materials, 2008, 7(1): 8-9. |
8 | LEE H, DELLATORE S M, MILLER W M, et al. Mussel-inspired surface chemistry for multifunctional coatings[J]. Science, 2007, 318(5849): 426-430. |
9 | JIN A T, WANG Y T, LIN K L, et al. Nanoparticles modified by polydopamine: working as “drug” carriers[J]. Bioactive Materials, 2020, 5(3): 522-541. |
10 | HAUSER D, SEPTIADI D, TURNER J, et al. From bioinspired glue to medicine: polydopamine as a biomedical material[J]. Materials, 2020, 13(7): 1730. |
11 | LIU M, JIANG W Q, CHEN Q, et al. A facile one-step method to synthesize SiO2@polydopamine core-shell nanospheres for shear thickening fluid[J]. RSC Advances, 2016, 6(35): 29279-29287. |
12 | HO C C, DING S J. Novel SiO2/PDA hybrid coatings to promote osteoblast-like cell expression on titanium implants[J]. Journal of Materials Chemistry B, 2015, 3(13): 2698-2707. |
13 | RYU J H, MESSERSMITH P B, LEE H. Polydopamine surface chemistry: a decade of discovery[J]. ACS Applied Materials & Interfaces, 2018, 10(9): 7523-7540. |
14 | BARCLAY T G, HEGAB H M, CLARKE S R, et al. Versatile surface modification using polydopamine and related polycatecholamines: chemistry, structure, and applications[J]. Advanced Materials Interfaces, 2017, 4(19): 1601192. |
15 | VECCHIA N F D, AVOLIO R, ALFE M, et al. Building-block diversity in polydopamine underpins a multifunctional eumelanin-type platform tunable through a quinone control point[J]. Advanced Functional Materials, 2013, 23(10): 1331-1340. |
16 | DREYER D R, MILLER D J, FREEMAN B D, et al. Elucidating the structure of poly(dopamine)[J]. Langmuir, 2012, 28(15): 6428-6435. |
17 | LIEBSCHER J, MRÓWCZYŃSKI R, SCHEIDT H A, et al. Structure of polydopamine: a never-ending story?[J]. Langmuir, 2013, 29(33): 10539-10548. |
18 | D’ISCHIA M, NAPOLITANO A, BALL V, et al. Polydopamine and eumelanin: from structure-property relationships to a unified tailoring strategy[J]. Accounts of Chemical Research, 2014, 47(12): 3541-3550. |
19 | HONG S, NA Y S, CHOI S, et al. Non-covalent self-assembly and covalent polymerization co-contribute to polydopamine formation[J]. Advanced Functional Materials, 2012, 22(22): 4711-4717. |
20 | HONG D, BAE K, HONG S P, et al. Mussel-inspired, perfluorinated polydopamine for self-cleaning coating on various substrates[J]. Chemical Communications, 2014, 50(79): 11649-11652. |
21 | HAN L, LU X, WANG M H, et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics[J]. Small, 2017, 13(2): 1601916. |
22 | SCHLAICH C, WEI Q, HAAG R. Mussel-inspired polyglycerol coatings with controlled wettability: from superhydrophilic to superhydrophobic surface coatings[J]. Langmuir, 2017, 33(38): 9508-9520. |
23 | WANG Y, SU J, LI T, et al. A novel UV-shielding and transparent polymer film: when bioinspired dopamine-melanin hollow nanoparticles join polymers[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36281-36289. |
24 | HAN L, LIU K Z, WANG M H, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance[J]. Advanced Functional Materials, 2018, 28(3): 1704195. |
25 | LI H, JIA Y, PENG H N, et al. Recent developments in dopamine-based materials for cancer diagnosis and therapy[J]. Advances in Colloid and Interface Science, 2018, 252: 1-20. |
26 | YU B, WANG D A, YE Q, et al. Robust polydopamine nano/microcapsules and their loading and release behavior[J]. Chemical Communications, 2009, 44: 6789-6791. |
27 | DING L, ZHU X B, WANG Y L, et al. Intracellular fate of nanoparticles with polydopamine surface engineering and a novel strategy for exocytosis-inhibiting, lysosome impairment-based cancer therapy[J]. Nano Letters, 2017, 17(11): 6790-6801. |
28 | WANG J T, BAI H J, ZHANG H Q, et al. Anhydrous proton exchange membrane of sulfonated poly(ether ether ketone) enabled by polydopamine-modified silica nanoparticles[J]. Electrochimica Acta, 2015, 152: 443-455. |
29 | TRIPATHI B P, DUBEY N C, SUBAIR R, et al. Enhanced hydrophilic and antifouling polyacrylonitrile membrane with polydopamine modified silica nanoparticles[J]. RSC Advances, 2016, 6(6): 4448-4457. |
30 | LYU Y, DU Y, QIU W Z, et al. Nanocomposite membranes via the codeposition of polydopamine/polyethylenimine with silica nanoparticles for enhanced mechanical strength and high water permeability[J]. ACS Applied Materials & Interfaces, 2017, 9(3): 2966-2972. |
31 | ZOTTI A, ZUPPOLINI S, BORRIELLO A, et al. Effect of SiO2@polydopamine core/shell nanoparticles as multifunctional filler for an aeronautical epoxy resin[J]. Materials Today-Proceedings, 2021, 34: 117-120. |
32 | ZOTTI A, ZUPPOLINI S, BORRIELLO A, et al. Thermal and mechanical characterization of an aeronautical graded epoxy resin loaded with hybrid nanoparticles[J]. Nanomaterials, 2020, 10(7): 1388. |
33 | LIU P M, CHANG W Y, JU L S, et al. Bioinspired noniridescent structural color with hidden patterns for anticounterfeiting[J]. ACS Applied Nano Materials, 2019, 2(9): 5752-5760. |
34 | XUE H J, ZHAO J J, ZHOU Q, et al. Boosting the sensitivity of a photoelectrochemical immunoassay by using SiO2@polydopamine core-shell nanoparticles as a highly efficient quencher[J]. ACS Applied Nano Materials, 2019, 2(3): 1579-1588. |
35 | DENG X X, WU S, LI Z P, et al. Ratiometric detection of DNA and protein in serum by a universal tripyridinyl RuII complex-encapsulated SiO2@polydopamine fluorescence nanoplatform[J]. Analytical Chemistry, 2020, 92(24): 15908-15915. |
36 | RAZAVI M, PRIMAVERA R, KEVADIYA B D, et al. Controlled nutrient delivery to pancreatic islets using polydopamine-coated mesoporous silica nanoparticles[J]. Nano Letters, 2020, 20(10): 7220-7229. |
37 | RAZAVI M, HU S, THAKOR A S. A collagen based cryogel bioscaffold coated with nanostructured polydopamine as a platform for mesenchymal stem cell therapy[J]. Journal of Biomedical Materials Research Part A, 2018, 106(8): 2213-2228. |
38 | C-C HO, DING S-J. Dopamine-induced silica-polydopamine hybrids with controllable morphology[J]. Chemical Communications, 2014, 50(27): 3602-3605. |
39 | NOONAN O, ZHANG H W, SONG H, et al. In situ Stöber templating: facile synthesis of hollow mesoporous carbon spheres from silica-polymer composites for ultra-high level in-cavity adsorption[J]. Journal of Materials Chemistry A, 2016, 4(23): 9063-9071. |
40 | LE-MASURIER S P, GODY G, PERRIER S, et al. One-pot polymer brush synthesis via simultaneous isocyanate coupling chemistry and “grafting from” RAFT polymerization[J]. Polymer Chemistry, 2014, 5(8): 2816-2823. |
41 | LE-MASURIER S P, DUONG H T T, BOYER C, et al. Surface modification of polydopamine coated particles via glycopolymer brush synthesis for protein binding and FLIM testing[J]. Polymer Chemistry, 2015, 6(13): 2504-2511. |
42 | HENG C N, LIU M, WANG K, et al. Biomimic preparation of highly dispersible silica nanoparticles based polymer nanocomposites[J]. Ceramics International, 2015, 41(10): 15075-15082. |
43 | HENG C N, LIU M Y, WANG K, et al. Fabrication of silica nanoparticle based polymer nanocomposites via a combination of mussel inspired chemistry and SET-LRP[J]. RSC Advances, 2015, 5(111): 91308-91314. |
44 | TIAN J W, ZHANG H X, LIU M Y, et al. A bioinspired strategy for surface modification of silica nanoparticles[J]. Applied Surface Science, 2015, 357: 1996-2003. |
45 | HUANG Q, LIU M Y, CHEN J Y, et al. Mussel inspired preparation of functional silica nanocomposites for environmental adsorption applications[J]. Applied Surface Science, 2016, 387: 285-293. |
46 | HUANG Q, LIU M Y, WAN Q, et al. Preparation of polymeric silica composites through polydopamine-mediated surface initiated ATRP for highly efficient removal of environmental pollutants[J]. Materials Chemistry and Physics, 2017, 193: 501-511. |
47 | HUANG Q, LIU M Y, MAO L C, et al. Surface functionalized SiO2 nanoparticles with cationic polymers via the combination of mussel inspired chemistry and surface initiated atom transfer radical polymerization: characterization and enhanced removal of organic dye[J]. Journal of Colloid and Interface Science, 2017, 499: 170-179. |
48 | WANG W C, JIANG Y, LIAO Y, et al. Fabrication of silver-coated silica microspheres through mussel-inspired surface functionalization[J]. Journal of Colloid and Interface Science, 2011, 358(2): 567-574. |
49 | ZHANG L, WU J J, WANG Y X, et al. Combination of bioinspiration: a general route to superhydrophobic particles[J]. Journal of the American Chemical Society, 2012, 134(24): 9879-9881. |
50 | DONG Y H, LIU T, SUN S B, et al. Preparation and characterization of SiO2/polydopamine/Ag nanocomposites with long-term antibacterial activity[J]. Ceramics International, 2014, 40(4): 5605-5609. |
51 | YANG D, TIAN M, WANG W C, et al. Controllable dielectric and electrical performance of polymer composites with novel core/shell-structured conductive particles through biomimetic method[J]. Electrochimica Acta, 2013, 87: 9-17. |
52 | GUO Z W, XUE J Z, LIU T, et al. Antibacterial mechanisms of silica/polydopamine/silver nanoparticles against gram positive and gram negative bacteria[J]. Micro & Nano Letters, 2014, 9(3): 210-214. |
53 | SHI X W, ZOU J F, CHEN X J, et al. The effect of size on the surface enhanced raman scattering property of SiO2@PDA@AgNP core-shell-satellite nanocomposite[J]. Chemistry Letters, 2020, 49(5): 534-537. |
54 | LAI G S, ZHANG H L, YONG J W, et al. In situ deposition of gold nanoparticles on polydopamine functionalized silica nanosphere for ultrasensitive nonenzymatic electrochemical immunoassay[J]. Biosensors & Bioelectronics, 2013, 47: 178-183. |
55 | BAO C Z, FAN D W, LIU X, et al. A signal-off type photoelectrochemical immunosensor for the ultrasensitive detection of procalcitonin: Ru(bpy)32+ and Bi2S3 co-sensitized ZnTiO3/TiO2 polyhedra as matrix and dual inhibition by SiO2/PDA-Au[J]. Biosensors and Bioelectronics, 2019, 142: 111513. |
56 | XING B; ZHU W J, ZHENG X P, et al. Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/Au NPs-luminol for insulin detection[J]. Sensors and Actuators B-Chemical, 2018, 265: 403-411. |
57 | 闫孟飞, 韩霞, 刘洪来. 基于聚多巴胺原位还原修饰的SiO2@PDA@Au复合材料的制备及催化性能[J]. 华东理工大学学报(自然科学版), 2017, 43(1): 16-22, 35. |
YAN M F, HAN X, LIU H L. Synthesis and catalytic properties of SiO2@PDA@Au composites based on polydopamine[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2017, 43(1): 16-22, 35. | |
58 | VEISI H, NIKSERESHT A, MOHAMMADI S, et al. Facile in-situ synthesis and deposition of monodisperse palladium nanoparticles on polydopamine-functionalized silica gel as a heterogeneous and recyclable nanocatalyst for aerobic oxidation of alcohols[J]. Chinese Journal of Catalysis, 2018, 39 (6): 1044-1050. |
[1] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[2] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[3] | 李伯耿, 罗英武, 刘平伟. 聚合物产品工程研究内容与方法的思考[J]. 化工进展, 2023, 42(8): 3905-3909. |
[4] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[5] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[6] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[7] | 余希希, 张金帅, 雷文, 刘承果. 基于动态共价键自修复的光固化高分子材料研究进展[J]. 化工进展, 2023, 42(7): 3589-3599. |
[8] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[9] | 杨发容, 顾丽莉, 刘洋, 李伟雪, 蔡洁云, 王惠平. 计算机模拟辅助特丁津分子印迹聚合物的制备及应用[J]. 化工进展, 2023, 42(6): 3157-3166. |
[10] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[11] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[12] | 何志勇, 郭天佛, 王金利, 吕锋. 二氧化碳/环氧化合物开环共聚催化剂进展[J]. 化工进展, 2023, 42(4): 1847-1859. |
[13] | 谭德新, 曾佳欣, 梁莉敏, 申思慧, 曾子倩, 王艳丽. 取代烷基变化对芳炔单体及其聚合物性能影响[J]. 化工进展, 2023, 42(4): 2031-2037. |
[14] | 张艺璇, 胡伟, 刘梦瑶, 鞠敬鸽, 赵义侠, 康卫民. 聚合物电解质在锌离子电池中的研究进展[J]. 化工进展, 2023, 42(3): 1397-1410. |
[15] | 高江雨, 张耀君, 贺攀阳, 刘礼才, 张枫烨. 磷酸基地质聚合物的制备及其性能研究进展[J]. 化工进展, 2023, 42(3): 1411-1425. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |