1 | 赵永志, 蒙波, 陈霖新, 等. 氢能源的利用现状分析[J]. 化工进展, 2015, 34(9): 3248-3255. | 1 | ZHAO Y Z, MENG B, CHEN L X, et al. Utilization status of hydrogen energy[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3248-3255. | 2 | 周池楼, 陈国华. O型橡胶密封圈高压氢气环境中特性表征[J]. 化工学报, 2018, 69(8): 3557-3564. | 2 | ZHOU C L, CHEN G H. Characterization of rubber O-ring seal in high-pressure gaseous hydrogen [J]. CIESC Journal, 2018, 69(8): 3557-3564. | 3 | 凌文, 刘玮, 李育磊, 等. 中国氢能基础设施产业发展战略研究[J]. 中国工程科学, 2019(3): 76-83. | 3 | LING W, LIU W, LI Y L, et al. Development strategy of hydrogen infrastructure industry in China[J]. Strategic Study of CAE, 2019(3): 76-83. | 4 | 郑津洋, 陈瑞, 李磊, 等. 多功能全多层高压氢气储罐[J]. 压力容器, 2005(12): 25-28, 47. | 4 | ZHENG J Y, CHEN R, LI L, et al. Multifunctional multi-layered stationary hydrogen storage vessels[J]. Pressure Vessel Technology, 2005(12): 25-28, 47. | 5 | ZHANG T Y, ZHENG Y P. Effects of absorption and desorption on hydrogen permeation—Ⅰ. Theoretical modeling and room temperature verification[J]. Acta Materialia, 1998, 46(14): 5023-5033. | 6 | ZHENG Y P, ZHANG T Y. Effects of absorption and desorption on hydrogen permeation—Ⅱ. Experimental measurements of activation energies[J]. Acta Materialia, 1998, 46(14): 5035-5043. | 7 | FOWLER J D, CHANDRA D, ELLEMAN T S, et al. Tritium diffusion in Al2O3 and BeO[J]. Journal of the American Ceramic Society, 1977, 60(3/4): 155-161. | 8 | WONG C P C, SALAVY J F, KIM Y, et al. Overview of liquid metal TBM concepts and programs[J]. Fusion Engineering and Design, 2008, 83(7): 850-857. | 9 | GLEIZES A, VAHLAS C, SOVAR M, et al. CVD-fabricated aluminum oxide coatings from aluminum tri-iso-propoxide: correlation between processing conditions and composition[J]. Chemical Vapor Deposition, 2007, 13(1): 23-29. | 10 | LEAL J, ALCALá G, BOLíVAR F J, et al. Simulation and experimental approach to CVD-FBR aluminide coatings on ferritic steels under steam oxidation[J]. Corrosion Science, 2008, 50(7): 1833-1840. | 11 | 邓新建, 张东辉. 真空等离子喷涂及其在表面技术中的应用[J]. 表面技术, 1996(4): 33-35, 38. | 11 | DENG X J, ZHANG D H. Vacuum plasma spraying and its application in surface technology[J]. Surface Technology, 1996(4): 33-35, 38. | 12 | FAUCHAIS P. Understanding plasma spraying[J]. Journal of Physics D: Applied Physics, 2004, 37(9): R86-R108. | 13 | 沈嘉年, 李凌峰, 张玉娟, 等. 不锈钢表面包埋渗铝热氧化处理制备氧化铝膜及其对氢渗透的影响[J]. 原子能科学技术, 2005(S1): 73-78. | 13 | SHEN J N, LI L F, ZHANG Y J, et al. Effect of alumina film prepared by pack cementation aluminizing and thermal oxidation treatment of stainless steels on hydrogen permeation[J]. Atomic Energy Science and Technology, 2005(S1): 73-78. | 14 | ZAKORCHEMNA I, CARMONA N, ZAKROCZYMSKI T. Hydrogen permeation through sol–gel-coated iron during galvanostatic charging[J]. Electrochimica Acta, 2008, 53(28): 8154-8160. | 15 | VOLOSHCHUK I, ZAKROCZYMSKI T. Hydrogen entry and absorption in ZrO2 coated iron studied by electrochemical permeation and desorption techniques[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1826-1835. | 16 | 吴艳萍, 王庆富, 蒋驰, 等. 1Cr18Ni9Ti不锈钢表面Al2O3阻氚涂层磁控溅射-微弧氧化法制备技术研究[J]. 功能材料, 2016, 47(9): 9187-9191. | 16 | WU Y P, WANG Q F, JIANG C, et al. Preparation of alumina tritium permeation barrier coating on 1Cr18Ni9Ti stainless steel by magnetron sputtering and micro-arc oxidation[J]. Journal of Functional Materials, 2016, 47(9): 9187-9191. | 17 | TERAI T, YONEOKA T, TANAKA H, et al. Tritium permeation through austenitic stainless steel with chemically densified coating as a tritium permeation barrier[J]. Journal of Nuclear Materials, 1994(212/215): 976-980. | 18 | KULSARTOV T V, HAYASHI K, NAKAMICHI M, et al. Investigation of hydrogen isotope permeation through F82H steel with and without a ceramic coating of Cr2O3-SiO2 including CrPO4 (out-of-pile tests)[J]. Fusion Engineering and Design, 2006, 81(1): 701-705. | 19 | 杨远航. 氧化铬阻氢渗透涂层的制备及其性能研究[D]. 北京: 北京石油化工学院, 2018. | 19 | YANG Y H. Operations of chromium oxide hydrogen permeation penetration coating and its properties[D]. Beijing: Beijing Institute of Petrochemical Technology, 2018. | 20 | HATANO Y, ZHANG K, HASHIZUME K. Fabrication of ZrO2 coatings on ferritic steel by wet-chemical methods as a tritium permeation barrier[J]. Physica Scripta, 2011, T145: 014044. | 21 | ZHANG K, HATANO Y. Sealing of pores in sol-gel-derived tritium permeation barrier coating by electrochemical technique[J]. Journal of Nuclear Materials, 2011, 417(1): 1229-1232. | 22 | SERRA E, GLASBRENNER H, PERUJO A. Hot-dip aluminium deposit as a permeation barrier for MANET steel[J]. Fusion Engineering and Design, 1998, 41(1): 149-155. | 23 | SERRA E, KELLY P J, ROSS D K, et al. Alumina sputtered on MANET as an effective deuterium permeation barrier[J]. Journal of Nuclear Materials, 1998, 257(2): 194-198. | 24 | FENG J, DAN M, JIN F Y, et al. Preparation and properties of alumina coatings as tritium permeation barrier by plasma electrolytic oxidation[J]. Rare Metal Materials and Engineering, 2016, 45(2): 315-320. | 25 | FENG J, CHEN M Y, TONG H H, et al. Preparation of alumina coatings as tritium permeation barrier by a composite treatment of low temperature plasma[J]. Rare Metal Materials and Engineering, 2017, 46(10): 2837-2841. | 26 | 何迪. Cr2O3/Al2O3阻氢渗透涂层制备与性能研究[D]. 北京: 北京有色金属研究总院, 2014. | 26 | HE D. Study on the preparation and property of the Cr2O3/Al2O3 hydrogen permeation barrier[D]. Beijing: General Research Institute for Nonferrous Metals, 2014. | 27 | WANG P X, LIU J, WANG Y, et al. Investigation of SiC films deposited onto stainless steel and their retarding effects on tritium permeation[J]. Surface and Coatings Technology, 2000, 128/129: 99-104. | 28 | WU Y P, ZHU S F, ZHANG Y P, et al. The adhesion strength and deuterium permeation property of SiC films synthesized by magnetron sputtering[J]. International Journal of Hydrogen Energy, 2016, 41(25): 10827-10832. | 29 | NEMANI? V, MCGUINESS P J, DANEU N, et al. Hydrogen permeation through silicon nitride films[J]. Journal of Alloys and Compounds, 2012, 539: 184-189. | 30 | SHAN C Q, WU A J, LI Y J, et al. The behaviour of diffusion and permeation of tritium through 316L stainless steel with coating of TiC and TiN+TiC[J]. Journal of Nuclear Materials, 1992, 191/192/193/194: 221-225. | 31 | ZHANG R Q, LIU Y G, HUANG N K. Effects of hydrogen ion implantation on TiC-C coating of stainless steel[J]. Journal of Iron and Steel Research, International, 2008, 15(4): 77-81. | 32 | CHECCHETTO R, BONELLI M, GRATTON L M, et al. Analysis of the hydrogen permeation properties of TiN-TiC bilayers deposited on martensitic stainless steel[J]. Surface and Coatings Technology, 1996, 83(1): 40-44. | 33 | WANG Y, LIU D W, FENG S J, et al. Preparation of tritium permeation barrier consisting of titanium by the pack cementation method[J]. Surface and Coatings Technology, 2016, 307: 271-277. | 34 | 李兴彦, 黄永章, 张新, 等. 防氚渗透涂层的研究进展[J]. 金属功能材料, 2011, 18(2): 74-78. | 34 | LI X Y, HUANG Y Z, ZHANG X, et al. Review on tritium penetration barrier[J]. Metallic Functional Materials, 2011, 18(2): 74-78. | 35 | KALIN B A, YAKUSHIN V L, FOMINA E P. Tritium barrier development for austenitic stainless steel by its aluminizing in a lithium melt[J]. Fusion Engineering and Design, 1998, 41(1): 119-127. | 36 | FAZIO C, STEIN F K, SERRA E, et al. Investigation on the suitability of plasma sprayed Fe-Cr-Al coatings as tritium permeation barrier[J]. Journal of Nuclear Materials, 1999, 273(3): 233-238. | 37 | WU Y Y, JIANG L J, HE D, et al. Effect of Cr2O3 layer on the deuterium permeation properties of Y2O3/Cr2O3 composite coating prepared by MOCVD[J]. International Journal of Hydrogen Energy, 2016, 41(36): 16101-16107. | 38 | WANG Y, DI J, XUE L H, et al. Fabrication and characterization of a dense Cr2O3-Al phosphate double coating as tritium permeation barrier[J]. Fusion Engineering and Design, 2017, 125: 127-133. | 39 | WANG L, WU Y Y, LUO X F, et al. Effects of Ar/O2 ratio on preparation and properties of multilayer Cr2O3/α-Al2O3 tritium permeation barrier[J]. Surface and Coatings Technology, 2018, 339: 132-138. | 40 | WANG J P, LING Y H, LU Z X, et al. Hydrogen interaction characteristics of a Cr2O3/Y2O3 coating formed on stainless steel in an ultra-low oxygen environment[J]. International Journal of Hydrogen Energy, 2019, 44(16): 8669-8679. | 41 | ZHANG M Y, ZHAO R Y, LING Y H, et al. Preparation of Cr2O3/Al2O3 bipolar oxides as hydrogen permeation barriers by selective oxide removal on SS and atomic layer deposition[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12277-12287. | 42 | TAMURA M, EGUCHI T. Nanostructured thin films for hydrogen-permeation barrier[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2015, 33: 041503. | 43 | ZHANG G K, WANG X L, XIONG Y F, et al. Mechanism for adsorption, dissociation and diffusion of hydrogen in hydrogen permeation barrier of α-Al2O3: a density functional theory study[J]. International Journal of Hydrogen Energy, 2013, 38(2): 1157-1165. | 44 | FORCEY K S, ROSS D K, WU C H. The formation of hydrogen permeation barriers on steels by aluminising[J]. Journal of Nuclear Materials, 1991, 182: 36-51. | 45 | 何迪, 李帅, 刘晓鹏, 等. 退火处理对MOCVD氧化铝薄膜成分晶型及微观结构的影响[J]. 稀有金属, 2012, 36(5): 762-766. | 45 | HE D, LI S, LIU X P, et al. Influence of thermal annealing on composition, morphology and crystalline phase of alumina film deposited by MOCVD[J]. Chinese Journal of Rare Metals, 2012, 36(5): 762-766. | 46 | FUJITA H, CHIKADA T, ENGELS J, et al. The relationship between structural changes of ceramic coatings and γ-ray irradiation effect on deuterium permeation[J]. Fusion Engineering and Design, 2019, 146: 2255-2258. | 47 | QAMAR A, MAHMOOD A, SARWAR T, et al. Synthesis and characterization of porous crystalline SiC thin films prepared by radio frequency reactive magnetron sputtering technique[J]. Applied Surface Science, 2011, 257(15): 6923-6927. | 48 | LI S, HE D, LIU X P, et al. Deuterium permeation of amorphous alumina coating on 316L prepared by MOCVD[J]. Journal of Nuclear Materials, 2012, 420(1): 405-408. | 49 | 丁旺, 钱闯, 陈耀东, 等. 涂层与基体间结合力的检测与评定方法[J]. 现代车用动力, 2014(4): 55-58. | 49 | DING W, QIAN C, CHEN Y D, et al. Methods of measurement and evaluation of adhesion force between film and base body[J]. Modern Vehicle Power, 2014(4): 55-58. | 50 | 郜健. 氧化铝/氧化锆复合涂层的制备及其氢渗透性能研究[D]. 北京: 北京有色金属研究总院, 2014. | 50 | GAO J. Investigation of preparation and hydrogen permeation properties of alumina/zirconia composite coating[D]. Beijing: General Research Institute for Nonferrous Metals, 2014. | 51 | NEMANI? V. Hydrogen permeation barriers: basic requirements, materials selection, deposition methods, and quality evaluation[J]. Nuclear Materials and Energy, 2019, 19: 451-457. | 52 | CHIKADA T, SUZUKI A, KOBAYASHI T, et al. Microstructure change and deuterium permeation behavior of erbium oxide coating[J]. Journal of Nuclear Materials, 2011, 417(1): 1241-1244. | 53 | 张华, 李帅, 何迪, 等. 厚度对氧化铝涂层氢渗透性能的影响[J]. 功能材料, 2016, 47(11): 11141-11144, 11150. | 53 | ZHANG H, LI S, HE D, et al. Influence of thickness on hydrogen permeation properties of alumina coating[J]. Journal of Functional Materials, 2016, 47(11): 11141-11144, 11150. | 54 | DEVANATHAN M A V, STACHURSKI Z. The adsorption and diffusion of electrolytic hydrogen in palladium[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1962, 270(1340): 90-102. | 55 | SUN X K, XU J, LI Y Y. Hydrogen permeation behavior in metastable austenitic stainless steels 321 and 304[J]. Acta Metallurgica, 1989, 37(8): 2171-2176. | 56 | MOSHREF J M, EDRIS H, SHAFYEI A, et al. Evaluation of hydrogen permeation through standalone thermally sprayed coatings of AISI 316L stainless steel[J]. International Journal of Hydrogen Energy, 2018, 43(9): 4657-4670. | 57 | WANG X Z, LUO H, LUO J L. Effects of hydrogen and stress on the electrochemical and passivation behaviour of 304 stainless steel in simulated PEMFC environment[J]. Electrochimica Acta, 2019, 293: 60-77. | 58 | 赵大朋. 阴极保护下X80钢及焊接影响区的氢渗透行为和氢脆敏感性研究[D]. 青岛: 中国石油大学(华东), 2014. | 58 | ZHAO D P. Study on hydrogen permeation and hydrogen embrittlement of X80 pipeline steel and its HAZ caused by cathodic protection[D]. Qingdao: China University of Pertroleum(East China), 2014. | 59 | DOYLE D M, PALUMBO G, AUST K T, et al. The influence of intercrystalline defects on hydrogen activity and transport in nickel[J]. Acta Metallurgica Et Materialia, 1995, 43(8): 3027-3033. | 60 | ZAKROCZYMSKI T. Adaptation of the electrochemical permeation technique for studying entry, transport and trapping of hydrogen in metals[J]. Electrochimica Acta, 2006, 51(11): 2261-2266. | 61 | 褚武扬, 乔利杰, 李金许, 等. 氢脆和应力腐蚀[M]. 北京: 科学出版社, 2013: 65. | 61 | CHU W Y, QIAO L J, LI J X, et al. Hydrogen embrittlement and stress corrosion cracking[M]. Beijing: Science Press, 2013: 65. | 62 | 高艮涛. 氧化铝-铁铝复合涂层表面氘溶解及扩散行为研究[D]. 重庆: 重庆大学, 2017. | 62 | GAO G T. Study on deuterium dissolution and diffusion behavior of Al2O3/Fe-Al composite coating[D]. Chongqing: Chongqing University, 2017. | 63 | ZACKAY V F, PARKER E R, FAHR D, et al. The enhancement of ductility in high-strength steels[J]. ASM Trans. Quart., 1967, 60(2): 252-259. | 64 | FRAPPART S, OUDRISS A, FEAUGAS X, et al. Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy[J]. Scripta Materialia, 2011, 65(10): 859-862. | 65 | YOUNG G A, SCULLY J R. The diffusion and trapping of hydrogen in high purity aluminum[J]. Acta Materialia, 1998, 46(18): 6337-6349. | 66 | HILL M L, JOHNSON E W. The diffusivity of hydrogen in nickel[J]. Acta Metallurgica, 1955, 3(6): 566-571. | 67 | PéREZ E D, VERBEKEN K, DUPREZ L, et al. Evaluation of hydrogen trapping in high strength steels by thermal desorption spectroscopy[J]. Materials Science and Engineering A, 2012, 551: 50-58. | 68 | 屈文敏, 花争立, 李雄鹰, 等. 热脱附谱技术在储氢容器材料氢陷阱研究中的应用研究进展[J]. 化工进展, 2017, 36(11): 4160-4169. | 68 | QU W M, HUA Z L, LI X Y, et al. Application of TDS technology in the study of hydrogen traps in the materials of hydrogen storage vessels[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4160-4169. | 69 | WIPF H. The gorsky effect, electrotransport and thermotransport of hydrogen in metals[J]. Journal of the Less Common Metals, 1976, 49: 291-307. | 70 | V?LKL J, ALEFELD G. The Gorsky effect: recent results[J]. IL Nuovo Cimento B, 1976, 33(1): 190-204. | 71 | V?LKL J. The Gorsky effect[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1982, 86: 301. | 72 | 褚武扬, 乔利杰, 李金许, 等. 氢脆和应力腐蚀[M]. 北京: 科学出版社, 2013: 94-95. | 72 | CHU W Y, QIAO L J, LI J X, et al. Hydrogen embrittlement and stress corrosion cracking[M]. Beijing: Science Press, 2013: 94-95. | 73 | ALEFELD G, V?LKL J. Hydrogen in metals Ⅰ: Basic properties[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1978. | 74 | WILLIAM J. Safety standard for hydrogen and hydrogen systems[M]. Washington: Office of Safety and Mission Assurance, 1997: 301c. | 75 | BRANDOLT C D S, MALFATTI C D F, ORTEGA V M R, et al. Determination of hydrogen trapping mechanisms by microprinting in Ni and Co coatings obtained by HVOF[J]. Surface and Coatings Technology, 2019, 362: 262-273. | 76 | BRANDOLT C D S, NORONHA L C, HIDALGO G E N, et al. Niobium coating applied by HVOF as protection against hydrogen embrittlement of API 5CT P110 steel[J]. Surface and Coatings Technology, 2017, 322: 10-18. | 77 | DE A K S, SCHUABB C G C, LAGE M A, et al. Slow strain rate tests coupled with hydrogen permeation: new possibilities to assess the role of hydrogen in stress corrosion cracking tests Part I: Methodology and commissioning results[J]. Corrosion Science, 2019, 152: 45-53. | 78 | 国家市场监督管理总局, 中国国家标准化管理委员会. 氢气储存输送系统 第2部分:金属材料与氢环境相容性试验方法: GB/T 34542.2—2018[S]. 北京: 中国标准出版社, 2018. | 78 | State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Storage and transportation systems for gaseous hydrogen—Part 2: Test methods for evaluating metallic material compatibility in hydrogen atmosphere: GB/T 34542.2—2018[S]. Beijing: Standards Press of China, 2018. | 79 | European Committee for Standardization. Transportable gas cylinders-compatibility of cylinder and valve materials wiith gas contents—Part 4: Test methods for selecting steels resistant to hydrogen embrittlement: ISO11114.4[S]. | 80 | Gas Standards CSA. Test methods for evaluating material compatibility in compressed hydrogen applications-metals: ANSI/CSA CHMC1[S]. | 81 | SAE. Technical information report for fuel systems in fuel cell and other hydrogen vehicles: SAE J2579[S]. | 82 | 郑津洋, 周池楼, 顾超华, 等. 高压氢气环境材料耐久性试验装置的研究[J]. 太阳能学报, 2015, 36(5): 1073-1080. | 82 | ZHENG J Y, ZHOU C L, GU C H, et al. Research of materials testing apparatus in high-pressure hydrogen[J]. Acta Energiae Solaris Sinica, 2015, 36(5): 1073-1080. | 83 | KIM Y S, KIM J G. Electroplating of reduced-graphene oxide on austenitic stainless steel to prevent hydrogen embrittlement[J]. International Journal of Hydrogen Energy, 2017, 42(44): 27428-27437. |
|