1 | JING C, LI Y L, LANDSBERGER S. Review of soluble uranium removal by nanoscale zero valent iron[J]. Journal of Environmental Radioactivity, 2016, 164: 65-72. | 2 | CHEN A W, SHANG C, SHAO J H, et al. The application of iron-based technologies in uranium remediation: a review[J]. Science of the Total Environment, 2017, 575: 1291-1306. | 3 | 穆毅, 贾法龙, 艾智慧, 等. 纳米零价铁活化分子氧原理及降解有机污染物性能增强策略[J]. 化学学报, 2017, 75(6): 538-543. | 3 | MU Y, JIA F L, AI Z H, et al. Molecular oxygen activation with nano zero-valent iron for aerobic degradation of organic contaminants and the performance enhancement[J]. Acta Chimica Sinica, 2017, 75(6): 538-543. | 4 | 曾慎亮, 翁秀兰, 童玉贵, 等. 绿色合成纳米铁同时去除水体中的Pb(Ⅱ)和Cd(Ⅱ)[J]. 环境科学学报, 2015, 35(11): 3538-3544. | 4 | ZENG S L, WENG X L, TONG Y G, et al. Simultaneous removal of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution by green synthesized iron nanoparticles[J]. Acta Scientiae Circumstantiae, 2015, 35(11): 3538-3544. | 5 | MU?OZ J E, CERVANTES J, ESPARZA R, et al. Iron nanoparticles produced by high-energy ball milling[J]. Journal of Nanoparticle Research, 2007, 9(5): 945-950. | 6 | TAO N R, WANG Z B, TONG W P, et al. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment[J]. Acta Materialia, 2002, 50(18): 4603-4616. | 7 | WANG C M, BAER D R, AMONETTE J E, et al. Morphology and oxide shell structure of iron nanoparticles grown by sputter gas aggregation[J]. Nanotechnology, 2007, 18(25): 5603-5609. | 8 | BAE S, GIM S, KIM H, et al. Effect of NaBH4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p-nitrophenol[J]. Applied Catalysis B: Environmental, 2016, 182: 541-549. | 9 | WEN J Z, GOLDSMITH C F, ASHCRAFT R W, et al. Detailed kinetic modeling of iron nanoparticle synthesis from the decomposition of Fe(CO)5[J]. The Journal of Physical Chemistry C, 2007, 111(15): 5677-5688. | 10 | OKOLI C, SANCHEZ-DOMINGUEZ M, BOUTONNET M, et al. Comparison and functionalization study of microemulsion-prepared magnetic iron oxide nanoparticles[J]. Langmuir, 2012, 28(22): 8479-8485. | 11 | MITTAL A K, CHISTI Y, BANERJEE U C. Synthesis of metallic nanoparticles using plant extracts[J]. Biotechnology Advances, 2013, 31(2): 346-356. | 12 | HOAG G E, COLLINS J B, HOLCOMB J L, et al. Degradation of bromothymol blue by ‘greener’ nano-scale zero-valent iron synthesized using tea polyphenols[J]. Journal of Materials Chemistry, 2009, 19(45): 8671-8677. | 13 | NADAGOUDA M N, CASTLE A B, MURDOCK R C, et al. In vitro biocompatibility of nanoscale zerovalent iron particles (nZVI) synthesized using tea polyphenols[J]. Green Chemistry, 2010, 12(1): 114-122. | 14 | SINGH P, KIM Y J, ZHANG D B, et al. Biological synthesis of nanoparticles from plants and microorganisms[J]. Trends in Biotechnology, 2016, 34(7): 588-599. | 15 | BLAKEMORE R. Magnetotactic bacteria[J]. Science, 1975, 190(4212): 377. | 16 | MARTINEZ-CABANAS M, LOPEZ-GARCIA M, BARRIADA J L, et al. Green synthesis of iron oxide nanoparticles: development of magnetic hybrid materials for efficient As(Ⅴ) removal[J]. Chemical Engineering Journal, 2016, 301: 83-91. | 17 | RAJIV P, BAVADHARANI B, KUMAR M N, et al. Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities[J]. Biocatalysis and Agricultural Biotechnology, 2017, 12: 45-49. | 18 | MOHANPURIA P, RANA N K, YADAV S K. Biosynthesis of nanoparticles: technological concepts and future applications[J]. Journal of Nanoparticle Research, 2008, 10(3): 507-517. | 19 | KIM S H, CHOI P P. Enhanced Congo red dye removal from aqueous solutions using iron nanoparticles: adsorption, kinetics, and equilibrium studies[J]. Dalton Transactions, 2017, 46(44): 15470-15479. | 20 | ALI I, PENG C S, KHAN Z M, et al. Green synthesis of phytogenic magnetic nanoparticles and their applications in the adsorptive removal of crystal violet from aqueous solution[J]. Arabian Journal for Science and Engineering, 2018, 43(11): 6245-6259. | 21 | LEILI M, FAZLZADEH M, BHATNAGAR A. Green synthesis of nano-zero-valent iron from nettle and thyme leaf extracts and their application for the removal of cephalexin antibiotic from aqueous solutions[J]. Environmental Technology, 2018, 39(9): 1158-1172. | 22 | ALHARBI O M L. Sorption, kinetic, thermodynamics and artificial neural network modelling of phenol and 3-amino-phenol in water on composite iron nano-adsorbent[J]. Journal of Molecular Liquids, 2018, 260: 261-269. | 23 | SRAVANTHI K, AYODHYA D, YADGIRI SWAMY P. Green synthesis, characterization of biomaterial-supported zero-valent iron nanoparticles for contaminated water treatment[J]. Journal of Analytical Science and Technology, 2018, 9(1): 3-13. | 24 | ALI I, ALOTHMAN Z A, SANAGI M M. Green synthesis of iron nano-impregnated adsorbent for fast removal of fluoride from water[J]. Journal of Molecular Liquids, 2015, 211: 457-465. | 25 | SILVEIRA C, SHIMABUKU Q L, FERNANDES S M, et al. Iron-oxide nanoparticles by the green synthesis method using Moringa oleifera leaf extract for fluoride removal[J]. Environmental Technology, 2018, 39(22): 2926-2936. | 26 | BAGBI Y, SARSWAT A, TIWARI S, et al. Synthesis of l-cysteine stabilized zero-valent iron (NZVI) nanoparticles for lead remediation from water[J]. Environmental Nanotechnology, Monitoring & Management, 2017, 7: 34-45. | 27 | ARSHADI M, ABDOLMALEKI M K, MOUSAVINIA F, et al. Nano modification of NZVI with an aquatic plant azolla filiculoides to remove Pb(Ⅱ) and Hg(Ⅱ) from water: aging time and mechanism study[J]. Journal of Colloid and Interface Science, 2017, 486: 296-308. | 28 | MALIK P, SHANKAR R, MALIK V, et al. Green chemistry based benign routes for nanoparticle synthesis[J]. Journal of Nanoparticles, 2014, 2014: 1-14. | 29 | NJAGI E C, HUANG H, STAFFORD L, et al. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts[J]. Langmuir the American Chemical Society Journal of Surfaces & Colloids, 2011, 27(1): 264-271. | 30 | MACHADO S, PACHECO J G, NOUWS H P, et al. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts[J]. Science of the Total Environment, 2015, 533: 76-81. | 31 | WANG T, JIN X Y, CHEN Z L, et al. Green synthesis of Fe nanoparticles using eucalyptus leaf extracts for treatment of eutrophic wastewater[J]. Science of the Total Environment, 2014, 466/467: 210-213. | 32 | FAZLZADEH M, RAHMANI K, ZAREI A, et al. A novel green synthesis of zero valent iron nanoparticles (nZVI) using three plant extracts and their efficient application for removal of Cr(Ⅵ) from aqueous solutions[J]. Advanced Powder Technology, 2017, 28(1): 122-130. | 33 | XIAO Z L, YUAN M, YANG B, et al. Plant-mediated synthesis of highly active iron nanoparticles for Cr(Ⅵ) removal: investigation of the leading biomolecules[J]. Chemosphere, 2016, 150: 357-364. | 34 | VENKATESWARLU S, NATESH KUMAR B, PRASAD C H, et al. Bio-inspired green synthesis of Fe3O4 spherical magnetic nanoparticles using Syzygium cumini seed extract[J]. Physica B: Condensed Matter, 2014, 449: 67-71. | 35 | EBRAHIMINEZHAD A, ZARE-HOSEINABADI A, SARMAH A K, et al. Plant-mediated synthesis and applications of iron nanoparticles[J]. Molecular Biotechnology, 2018, 60(2): 154-168. | 36 | KOZMA G, RóNAVáRI A, KóNYA Z, et al. Environmentally benign synthesis methods of zero-valent iron nanoparticles[J]. American Chemical Society Sustainable Chemistry & Engineering, 2016, 4(1): 291-297. | 37 | MACHADO S, PINTO S L, GROSSO J P, et al. Green production of zero-valent iron nanoparticles using tree leaf extracts[J]. Science of the Total Environment, 2013, 445/446: 1-8. | 38 | MACHADO S, GROSSO J P, NOUWS H P A, et al. Utilization of food industry wastes for the production of zero-valent iron nanoparticles[J]. Science of the Total Environment, 2014, 496: 233-240. | 39 | POGUBEROVI? S S, KR?MAR D M, MALETI? S P, et al. Removal of As(Ⅲ) and Cr(Ⅵ) from aqueous solutions using“green” zero-valent iron nanoparticles produced by oak, mulberry and cherry leaf extracts[J]. Ecological Engineering, 2016, 90: 42-49. | 40 | MAKAROV V V, MAKAROVA S S, LOVE A J, et al. Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants[J]. Langmuir, 2014, 30(20): 5982-5988. | 41 | KUMAR B, SMITA K, CUMBAL L, et al. Biogenic synthesis of iron oxide nanoparticles for 2-arylbenzimidazole fabrication[J]. Journal of Saudi Chemical Society, 2014, 18(4): 364-369. | 42 | EHRAMPOUSH M H, MIRIA M, SALMANI M H, et al. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract[J]. Journal of Environmental Health Science & Engineering, 2015, 13(1): 1-7. | 43 | CAI Y, SHEN Y H, XIE A J, et al. Green synthesis of soya bean sprouts-mediated superparamagnetic Fe3O4 nanoparticles[J]. Journal of Magnetism & Magnetic Materials, 2010, 322(19): 2938-2943. | 44 | PRASAD C, GANGADHARA S, VENKATESWARLU P. Bio-inspired green synthesis of Fe3O4 magnetic nanoparticles using watermelon rinds and their catalytic activity[J]. Applied Nanoscience, 2016, 6(6): 797-802. | 45 | CAO D, JIN X Y, GAN L, et al. Removal of phosphate using iron oxide nanoparticles synthesized by eucalyptus leaf extract in the presence of CTAB surfactant[J]. Chemosphere, 2016, 159: 23-31. | 46 | KUMAR B, SMITA K, CUMBAL L, et al. Phytosynthesis and photocatalytic activity of magnetite (Fe3O4) nanoparticles using the andean blackberry leaf[J]. Materials Chemistry and Physics, 2016, 179: 310-315. | 47 | JASSAL V, SHANKER U, GAHLOT S. Green synthesis of some iron oxide nanoparticles and their interaction with 2-amino, 3-amino and 4-amino pyridines[J]. Materials Today: Proceedings, 2016, 3(6): 1874-1882. | 48 | SHAHWAN T, SIRRIAH S ABU, NAIRAT M, et al. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes[J]. Chemical Engineering Journal, 2011, 172(1): 258-266. | 49 | ALI I, AL-OTHMAN Z A, ALWARTHAN A. Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water[J]. Journal of Molecular Liquids, 2016, 221: 1168-1174. | 50 | WANG T, LIN J J, CHEN Z L, et al. Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution[J]. Journal of Cleaner Production, 2014, 83: 413-419. | 51 | HUANG L L, WENG X L, CHEN Z L, et al. Green synthesis of iron nanoparticles by various tea extracts: comparative study of the reactivity[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 130: 295-301. | 52 | SOLIEMANZADEH A, FEKRI M, BAKHTIARY S, et al. Biosynthesis of iron nanoparticles and their application in removing phosphorus from aqueous solutions[J]. Chemistry and Ecology, 2016, 32(3): 286-300. | 53 | DEVATHA C P, THALLA A K, KATTE S Y. Green synthesis of iron nanoparticles using different leaf extracts for treatment of domestic waste water[J]. Journal of Cleaner Production, 2016, 139: 1425-1435. | 54 | RANA A, KUMARI N, TYAGI M, et al. Leaf-extract mediated zero-valent iron for oxidation of arsenic (Ⅲ): preparation, characterization and kinetics[J]. Chemical Engineering Journal, 2018, 347: 91-100. | 55 | BHOWMICK S, CHAKRABORTY S, MONDAL P, et al. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism[J]. Chemical Engineering Journal, 2014, 243: 14-23. | 56 | HUANG L L, LUO F, CHEN Z L, et al. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 137: 154-159. | 57 | USMAN M, BYRNE J M, CHAUDHARY A, et al. Magnetite and green rust: synthesis, properties, and environmental applications of mixed-valent iron minerals[J]. Chemical Reviews, 2018, 118(7): 3251-3304. | 58 | ALI A, ZAFAR H, ZIA M, et al. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles[J]. Nanotechnology, Science and Applications, 2016, 9: 49-67. | 59 | MACHALA L, TU?EK J, ZBO?IL R. Polymorphous transformations of nanometric iron(Ⅲ) oxide: a review[J]. Chemistry of Materials, 2011, 23(14): 3255-3272. | 60 | 曲晓飞. 磁铁矿、菱铁矿和四方纤铁矿的合成及其生物矿化意义[D]. 合肥: 中国科学技术大学, 2011.QU X F. Synthesis of magnetite, siderite and akaganeite and its biomineralization significance [D]. Hefei: University of Science and Technology of China, 2011. | 61 | 吴洋. 基于巴氏芽孢八叠球菌的生物矿化现象及分子机理的研究[D]. 天津: 天津大学, 2017.WU Y. Phenomenon and mechanism of biomineralization induced by Sporosarcina pasteurii [D]. Tianjin: Tianjin University, 2017. | 62 | PICARD A, GARTMAN A, GIRGUIS P R. What do we really know about the role of microorganisms in iron sulfide mineral formation?[J]. Frontiers in Earth Science, 2016, 4: 68-77. | 63 | ARAKAKI A, SHIMIZU K, ODA M, et al. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids[J]. Organic & Biomolecular Chemistry, 2015, 13(4): 974-989. | 64 | TARAFDAR J C, RALIYA R. Rapid, low-cost, and ecofriendly approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9[J]. Journal of Nanoparticles, 2013. DOI: 10.1155/2013/141274.. | 65 | SUBRAMANIYAM V, SUBASHCHANDRABOSE S R, THAVAMANI P, et al. Chlorococcum sp. MM11—A novel phyco-nanofactory for the synthesis of iron nanoparticles[J]. Journal of Applied Phycology, 2015, 27(5): 1861-1869. | 66 | SUBRAMANIYAM V, SUBASHCHANDRABOSE S R, GANESHKUMAR V, et al. Cultivation of Chlorella on brewery wastewater and nano-particle biosynthesis by its biomass[J]. Bioresource Technology, 2016, 211: 698-703. | 67 | MEHROTRA N, TRIPATHI R M, ZAFAR F, et al. Catalytic degradation of dichlorvos using biosynthesized zero valent iron nanoparticles[J]. IEEE Transactions on Nanobioscience, 2017, 16(4): 280-286. | 68 | BHARDE A, WANI A, SHOUCHE Y, et al. Bacterial aerobic synthesis of nanocrystalline magnetite[J]. Journal of the American Chemical Society, 2005, 127(26): 9326-9327. | 69 | CRESPO K A, BARONETTI J L, QUINTEROS M A, et al. Intra- and extracellular biosynthesis and characterization of iron nanoparticles from prokaryotic microorganisms with anticoagulant activity[J]. Pharmaceutical Research, 2016, 34(3): 591-598. | 70 | RAJENDRAN K, KARUNAGARAN V, MAHANTY B, et al. Biosynthesis of hematite nanoparticles and its cytotoxic effect on HepG2 cancer cells[J]. International Journal of Biological Macromolecules, 2015, 74: 376-381. | 71 | BYRNE J M, MUHAMADALI H, COKER V S, et al. Scale-up of the production of highly reactive biogenic magnetite nanoparticles using Geobacter sulfurreducens[J]. Journal of the Royal Society Interface, 2015, 12(107): 240-249. | 72 | KLUEGLEIN N, ZEITVOGEL F, STIERHOF Y D, et al. Potential role of nitrite for abiotic Fe(Ⅱ) oxidation and cell encrustation during nitrate reduction by denitrifying bacteria[J]. Applied and Environmental Microbiology, 2014, 80(3): 1051-1061. | 73 | Lü K P, NORMAN L, LI Y L. Restrictions on the production of multi-wall carbon nanotubes and nanofibers by Gallionella sp.[J]. Geomicrobiology Journal, 2015, 33(8): 709-715. | 74 | MIOT J, LI J, BENZERARA K, et al. Formation of single domain magnetite by green rust oxidation promoted by microbial anaerobic nitrate-dependent iron oxidation[J]. Geochimica et Cosmochimica Acta, 2014, 139: 327-343. | 75 | HERRERA-BECERRA R, ZORRILLA C, ASCENCIO J A. Production of iron oxide nanoparticles by a biosynthesis method: an environmentally friendly route[J]. The Journal of Physical Chemistry C, 2007, 111(44): 16147-16153. | 76 | NITHYA K, SATHISH A, SENTHIL K P, et al. Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni(Ⅱ) ions[J]. Journal of Industrial and Engineering Chemistry, 2018, 59: 230-241. | 77 | LI Z, WANG L, MENG J, et al. Zeolite-supported nanoscale zero-valent iron: new findings on simultaneous adsorption of Cd(Ⅱ), Pb(Ⅱ), and As(Ⅲ) in aqueous solution and soil[J]. Journal of Hazardous Materials, 2018, 344: 1-11. | 78 | LINGAMDINNE L P, CHANG Y Y, YANG J K, et al. Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals[J]. Chemical Engineering Journal, 2017, 307: 74-84. | 79 | PRABHAKAR R, SAMADDER S R, JYOTSANA. Aquatic and terrestrial weed mediated synthesis of iron nanoparticles for possible application in wastewater remediation[J]. Journal of Cleaner Production, 2017, 168: 1201-1210. | 80 | WANG Z. Iron complex nanoparticles synthesized by eucalyptus leaves[J]. American Chemical Society Sustainable Chemistry & Engineering, 2013, 1(12): 1551-1554. | 81 | SHU H Y, CHANG M C, YU H H, et al. Reduction of an azo dye acid black 24 solution using synthesized nanoscale zerovalent iron particles[J]. Journal of Colloid and Interface Science, 2007, 314(1): 89-97. | 82 | LUO F, YANG D, CHEN Z L, et al. The mechanism for degrading Orange Ⅱ based on adsorption and reduction by ion-based nanoparticles synthesized by grape leaf extract[J]. Journal of Hazardous Materials, 2015, 296: 37-45. | 83 | WEI Y F, FANG Z Q, ZHENG L C, et al. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal[J]. Applied Surface Science, 2017, 399: 322-329. | 84 | ALSHEHRI A, MALIK M A, KHAN Z, et al. Biofabrication of Fe nanoparticles in aqueous extract of Hibiscus sabdariffa with enhanced photocatalytic activities[J]. Royal Society of Chemistry Advances, 2017, 7(40): 25149-25159. | 85 | MUTHUKUMAR H, MATHESWARAN M. Amaranthus spinosus leaf extract mediated FeO nanoparticles: physicochemical traits, photocatalytic and antioxidant activity[J]. American Chemical Society Sustainable Chemistry & Engineering, 2015, 3(12): 3149-3156. | 86 | EBRAHIMINEZHAD A, TAGHIZADEH S, GHASEMI Y, et al. Green synthesized nanoclusters of ultra-small zero valent iron nanoparticles as a novel dye removing material[J]. Science of the Total Environment, 2018, 621: 1527-1532. | 87 | KUANG Y, WANG Q P, CHEN Z L, et al. Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles[J]. Journal of Colloid and Interface Science, 2013, 410: 67-73. | 88 | SCHOFTNER P, WALDNER G, LOTTERMOSER W, et al. Electron efficiency of nZVI does not change with variation of environmental parameters[J]. Science of the Total Environment, 2015, 535: 69-78. | 89 | SCOTT T B, DICKINSON M, CRANE R A, et al. The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles[J]. Journal of Nanoparticle Research, 2009, 12(5): 1765-1775. | 90 | LIU H, WANG Q, WANG C, et al. Electron efficiency of zero-valent iron for groundwater remediation and wastewater treatment[J]. Chemical Engineering Journal, 2013, 215/216: 90-95. | 91 | FAN D, O'BRIEN JOHNSON G, TRATNYEK P G, et al. Sulfidation of nano zerovalent iron (NZVI) for improved selectivity during in-situ chemical reduction (ISCR)[J]. Environmental Science & Technology, 2016, 50(17): 9558-9565. | 92 | LI D, MAO Z, ZHONG Y, et al. Reductive transformation of tetrabromobisphenol a by sulfidated nano zerovalent iron[J]. Water Research, 2016, 103: 1-9. | 93 | KIM E J, KIM J H, AZAD A M, et al. Facile synthesis and characterization of Fe/FeS nanoparticles for environmental applications[J]. American Chemical Society Applied Materials & Interfaces, 2011, 3(5): 1457-1462. | 94 | RAJAJAYAVEL S R, GHOSHAL S. Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron[J]. Water Research, 2015, 78: 144-153. | 95 | QIN H, LI J, YANG H, et al. Coupled effect of ferrous ion and oxygen on the electron selectivity of zerovalent iron for selenate sequestration[J]. Environmental Science & Technology, 2017, 51(9): 5090-5097. | 96 | QIAO J, SONG Y, SUN Y, et al. Effect of solution chemistry on the reactivity and electron selectivity of zerovalent iron toward Se(Ⅵ) removal[J]. Chemical Engineering Journal, 2018, 353: 246-253. |
|