1 | 程新群. 化学电源[M]. 北京: 化学工业出版社, 2008: 27-28. | 1 | CHENG X Q. Chemical power sources[M]. Beijing: Chemical Industry Press, 2008: 27-28. | 2 | 温迪雅, 付凌波, 李薇, 等. 废旧电池的管理及处置研究[J]. 环境科学与管理, 2015, 40(12): 37-41. | 2 | WEN D Y, FU L B, LI W, et al. Research on management and disposal of waste battery[J]. Environmental Science and Management, 2015, 40(12): 37-41. | 3 | 卢康. 以废旧锌锰干电池为锰源LiNi1/3Co1/3Mn1/3O2的制备及其改性研究[D]. 武汉: 武汉科技大学, 2018. | 3 | LU K. Study on the preparation and modification of LiNi1/3Co1/3Mn1/3O2 with spent Zn-Mn batteries as manganese source[D]. Wuhan: Wuhan University of Science and Technology, 2018. | 4 | QI Y P, MENG F S, YI X X, et al. A novel and efficient ammonia leaching method for recycling waste lithium ion batteries[J]. Journal of Cleaner Production, 2020, 251: 119665. | 5 | 蔡乐. 废旧三元动力锂电池正极材料回收制备二氧化锰复合材料研究[D]. 上海: 上海第二工业大学, 2018. | 5 | CAI L. Research on the preparation of manganese dioxide composite materials by recycling the cathode material of the waste ternary power lithium battery[D]. Shanghai: Shanghai Second Polytechnic University, 2018. | 6 | 杨理. 废旧碱性锌锰电池和废旧锂离子电池资源化研究[D]. 新乡: 河南师范大学, 2016. | 6 | YANG L. Study on the recycling of spent alkaline zinc manganese and spent lithium ion batteries[D]. Xinxiang: Henan Normal University, 2016. | 7 | 张笑笑. 废旧锂离子电池的回收处理与资源化利用[D]. 北京: 北京理工大学, 2016. | 7 | ZHANG X X. Recycling and resource utilization of spent lithium-ion batteries[D]. Beijing: Beijing Institute of Technology, 2016. | 8 | 孙明星. 中国废旧电池回收路径与管理体系研究[D]. 济南: 山东大学, 2016. | 8 | SUN M X. Researches on spent battery collection pathway and management system in China[D]. Jinan: Shandong University, 2016. | 9 | 丁杰萍. 国家实施电池限汞政策成效评估[D]. 兰州: 兰州大学, 2016. | 9 | DING J P. Efficiency assessment of battery mercury limitation policy in China[D]. Lanzhou: Lanzhou University, 2016. | 10 | JIANG Y J, DENG Y C, BU W G. Pyrometallurgical extraction of valuable elements in Ni-metal hydride battery electrode materials[J]. Metallurgical and Materials Transactions B, 2015, 46(5): 2153-2157. | 11 | SCHMUCH R, WAGNER R, H?RPEL G, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries[J]. Nature Energy, 2018, 3(4): 267-278. | 12 | ZHANG X X, LI L, FAN E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries[J]. Chemical Society Reviews, 2018, 47(19): 7239-7302. | 13 | FU X K, BEATTY D N, GAUSTAD G G, et al. Perspectives on cobalt supply through 2030 in the face of changing demand[J]. Environmental Science & Technology, 2020, 54(5): 2985-2993. | 14 | 孟大为, 马帅雨, 张志勇. 废旧电池处理现状及对策分析[J]. 电池工业, 2018, 22(4): 219-223. | 14 | MENG D W, MA S Y, ZHANG Z Y. Analysis of current situation and countermeasures to waste battery treatments[J]. Chinese Battery Industry, 2018, 22(4): 219-223. | 15 | 于明, 奚子杭, 王欣. 浅谈废旧电池的危害及其回收利用[J]. 黑龙江环境通报, 2014, 38(1): 89-90. | 15 | YU M, XI Z H, WANG X. Discussion on damage and recycling of spent battery[J]. Heilongjiang Environmental Journal, 2014, 38(1): 89-90. | 16 | WANG X, GAUSTAD G, BABBITT C W, et al. Economic and environmental characterization of an evolving Li-ion battery waste stream[J]. Journal of Environmental Management, 2014, 135: 126-134. | 17 | LIU P. Recycling waste batteries: recovery of valuable resources or reutilization as functional materials[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11176-11185. | 18 | ZHAO S Q, LI G M, HE W Z, et al. Recovery methods and regulation status of waste lithium-ion batteries in China: a mini review[J]. Waste Management & Research, 2019, 37(11): 1142-1152. | 19 | HUANG B, PAN Z F, SU X Y, et al. Recycling of lithium-ion batteries: recent advances and perspectives[J]. Journal of Power Sources, 2018, 399: 274-286. | 20 | 曹玲, 刘雅丽, 康铎之, 等. 废旧锂离子电池中有价金属回收及三元正极材料的再制备[J]. 化工进展, 2019, 38(5): 2499-2505. | 20 | CAO L, LIU Y L, KANG D Z, et al. Recovery of valuable metals from spent lithium ion battery and the resynthesis of Li(Ni1/3Co1/3Mn1/3)O2 materials[J]. Chemical Industry and Engineering Progress, 2019, 38(5): 2499-2505. | 21 | CHEN J P, LI Q W, SONG J S, et al. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries[J]. Green Chemistry, 2016, 18(8): 2500-2506. | 22 | POYRAZ A S, HUANG J P, CHENG S B, et al. Effective recycling of manganese oxide cathodes for lithium based batteries[J]. Green Chemistry, 2016, 18(11): 3414-3421. | 23 | BAHGAT M, FARGHALY F E, BASIR S M A, et al. Synthesis, characterization and magnetic properties of microcrystalline lithium cobalt ferrite from spent lithium-ion batteries[J]. Journal of Material Processing Technology, 2007, 183(1): 117-121. | 24 | NIE H H, XU L, SONG D W, et al. LiCoO2: recycling from spent batteries and regeneration with solid state synthesis[J]. Green Chemistry, 2015, 17(2): 1276-1280. | 25 | LI J H, ZHONG S W, XIONG D L, et al. Synthesis and electrochemical performances of LiCoO2 recycled from the incisors bound of Li-ion batteries[J]. Rare Metals, 2009, 28(4): 328-332. | 26 | 高桂兰, 贺欣, 李亚光, 等. 废旧车用动力锂离子电池的回收利用现状[J]. 环境工程, 2017, 35(10): 135-140. | 26 | GAO G L, HE X, LI Y G, et al. Current status of recycling technology of spent automotive lithium-ion batteries[J]. Environmental Engineering, 2017, 35(10): 135-140. | 27 | HARPER G, SOMMERVILLE R, KENDRICK E, et al. Recycling lithium-ion batteries from electric vehicles[J]. Nature, 2019, 575(7781): 75-86. | 28 | MIYAKE M, TOMIYAMA N, IWAMOTO K, et al. Biogas reforming over BaTi1-xSnxO3-suppored Ni-based catalysts recovered from spent Ni-metal-hydride batteries[J]. International Journal of Hydrogen Energy, 2015, 40(26): 8341-8346. | 29 | PEGORETTI V C B, DIXINI P V M, MAGNAGO L, et al. High-temperature (HT) LiCoO2 recycled from spent lithium ion batteries as catalyst for oxygen evolution reaction[J]. Materials Research Bulletin, 2019, 110: 97-101. | 30 | ZHANG X D, LI H X, YANG Y, et al. Facile synthesis of new efficient Cu/MnO2 catalysts from used battery for CO oxidation[J]. Journal of Environmental Chemical Engineering, 2017, 5(5): 5179-5186. | 31 | YAO L, YAO H S, XI G X, et al. Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using D,L-malic acid[J]. RSC Advances, 2016, 6(22): 17947-17954. | 32 | 张笑笑, 王鸯鸯, 刘媛, 等. 废旧锂离子电池回收处理技术与资源化再生技术进展[J]. 化工进展, 2016, 35(12): 4026-4032. | 32 | ZHANG X X, WANG Y Y, LIU Y, et al. Recent progress in disposal and recycling of spent lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 4026-4032. | 33 | MISHRA D, RHEE Y H. Microbial leaching of metals from solid industrial wastes[J]. Journal of Microbiology, 2014, 52(1): 1-7. | 34 | 宋易南. 废旧锌锰电池生物淋滤液制备锰锌铁氧体及其在水处理中的应用[D]. 北京: 北京理工大学, 2015. | 34 | SONG Y N. Preparation of Mn-Zn ferrite from spent Zn-Mn batteries using bioleaching liquor as precursor and its application in water treatment[D]. Beijing: Beijing Institute of Technology, 2015. | 35 | GALLEGOS M V, PELUSO M A, FINOCCHIO E, et al. Removal of VOCs by catalytic process. A study of MnZnO composites synthesized from waste alkaline and Zn/C batteries[J]. Chemical Engineering Journal, 2017, 313: 1099-1111. | 36 | GALLEGOS M V, FALCO L R, PELUSO M A, et al. Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination[J]. Waste Management, 2013, 33(6): 1483-1490. | 37 | NIU Z R, HUANG Q F, XIN B P, et al. Optimization of bioleaching conditions for metal removal from spent zinc-manganese batteries using response surface methodology[J]. Journal of Chemical Technology and Biotechnology, 2016, 91(3): 608-617. | 38 | WANG J, TIAN B Y, NIU Z R, et al. Synthesis of nano-sized Zn-Mn ferrite from the resulting bioleachate of obsolete Zn-Mn batteries at a high pulp density of 5.0% enhanced by added Fe3+[J]. Journal of Cleaner Production, 2019, 229: 299-307. | 39 | WANG X, QIU H J, LIU H L, et al. Recycling application of waste Li-MnO2 batteries as efficient catalysts based on electrochemical lithiation to improve catalytic activity[J]. Green Chemistry, 2018, 20(21): 4901-4910. | 40 | 蒋志荣. 废旧锌锰电池电极材料的分析表征及催化和吸附性能研究[D]. 武汉: 武汉纺织大学, 2017. | 40 | JIANG Z R. Study on electrode materials of spent Zn-MnO2 batteries: characterization, catalytic reactivity and adsorption property[D]. Wuhan: Wuhan Textile University, 2017. | 41 | ZHANG L H, WU S S, WAN Y, et al. Mn3O4/carbon nanotube nanocomposites recycled from waste alkaline Zn-MnO2 batteries as high-performance energy materials[J]. Rare Metals, 2017, 36(5): 442-448. | 42 | SHANGGUAN E, FU S Q, WU S Q, et al. Evolution of spent LiFePO4 powders into LiFePO4/C/FeS composites: a facile and smart approach to make sustainable anodes for alkaline Ni-Fe secondary batteries[J]. Journal of Power Sources, 2018, 403: 38-48. |
|