化工进展 ›› 2020, Vol. 39 ›› Issue (1): 311-319.DOI: 10.16085/j.issn.1000-6613.2019-0620
收稿日期:
2019-04-18
出版日期:
2020-01-05
发布日期:
2020-01-14
通讯作者:
蒋成君
作者简介:
蒋成君(1981—),男,博士,高级工程师。E-mail: <email>jcj312@163.com</email>。
基金资助:
Chengjun JIANG1(),Guilin CHENG2
Received:
2019-04-18
Online:
2020-01-05
Published:
2020-01-14
Contact:
Chengjun JIANG
摘要:
使用共结晶技术分离有机小分子,特别是一些不能成盐的、高纯度要求的原料药(API)的分离是晶体工程应用的前沿。其原理是通过分子间的识别作用形成共晶,改变目标分子的晶格能或溶解特性,从而实现分离。针对共结晶在分离中的应用,本文从共结晶分离的热力学原理出发,系统综述了共结晶在分离纯化非手性分子以及手性API及中间体中的实例。从分子结构、分子间的相互作用力、溶度积常数、溶剂体系等不同角度对分离实例进行分析。针对该技术现存的问题如共晶形成物的选择缺乏规律性,实际API纯化体系的复杂性,共晶形成物回收利用的可行性,指出建立系统的共晶形成物选择方法、深入地研究热力学行为是未来的主要研究方向。
中图分类号:
蒋成君, 程桂林. 共结晶分离技术研究进展[J]. 化工进展, 2020, 39(1): 311-319.
Chengjun JIANG, Guilin CHENG. Progress in co-crystallization as a separation technology[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 311-319.
1 | 杨启炜, 鲍宗必, 邢华斌, 等 . 离子液体萃取分离结构相似化合物研究进展[J]. 化工进展, 2019, 38(1): 91-99. |
YANG Qiwei , BAO Zongbi , XING Huabin , et al . Research progress on the extractive separation of structurally-related compounds by ionic liquids[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 91-99. | |
2 | VARIANKAVAL N , COTE A S . From form to function: crystallization of active pharmaceutical ingredients[J]. AIChE Journal, 2018, 54(7): 1682-1688. |
3 | AKERÖY C B , FASULO M E , DESPER J . Cocrystal or salt: does it really matter?[J]. Molecular Pharmaceutics, 2007, 4 (3): 317-322. |
4 | BOLLA G , NANGIA A . Pharmaceutical cocrystals: walking the talk[J]. Chemical Communications, 2016, 52: 8342-8360. |
5 | ROY L, LIPERT M P , RODRIGUEZ-HORNEDO N . Co-crystal solubility and thermodynamic stability [M]// Pharmaceutical salts and co-crystals. London: The Royal Society of Chemistry, 2012. |
6 | 程桂林, 邓彩赟, 蒋成君 . 姜黄素-邻苯二酚共晶溶度积的研究[J]. 中国现代应用药学, 2018, 35(5): 623-627. |
CHENG Guilin , DENG Caiyun , JIANG Chengjun . Research on solubility products of curcumin-catechol co-crystal [J]. Chinese Journal of Modern Applied Pharmacy, 2018, 35(5): 623-627. | |
7 | CHIARELLA R A , RODRÍGUEZ-SPONG B , RODRÍGUEZ- HORNEDO N . Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation [J]. Crystal Growth & Design, 2006, 6(2): 592-600. |
8 | NEHM S J , DAVEY R J , PETERSON M L . Making co-crystals: the utility of ternary phase diagrams[J]. Crystal Growth & Design, 2007, 7(7): 1223-1226. |
9 | CHADWICK K , DAVEY R , SADIQ G , et al . The utility of a ternary phase diagram in the discovery of new co-crystal forms[J]. CrystEngComm, 2009, 11: 412-414 |
10 | LANGE L , SADOWSKI G . Thermodynamic modeling for efficient cocrystal formation[J] Crystal Growth & Design, 2015, 15: 4406-4416. |
17 | WEBER C C , WOOD G P F , KUNOV-KRUSE A J , et al . Quantitative solution measurement for the selection of complexing agents to enable purification by impurity complexation[J]. Crystal Growth & Design, 2014, 14(7): 3649-3657. |
18 | PONS-SIEPERMANN C A , HUANG S , MYERSON A S . Purification of nitrophenols using complex assisted crystallization[J]. Cryst Eng Comm., 2016, 18: 7487-7493. |
11 | DESIRAJU G R . Supramolecular synthons in crystal engineering: a new organic synthesis[J]. Angewandte Chemie: International Edition, 1995, 34: 2311-2327. |
12 | CORRADI E , MEILLE S V , MESSINA M T , et al . Halogen bonding versus hydrogen bonding in driving self-assembly processes[J]. Angewandte Chemie: International Edition, 2000, 39(10): 1782-1786. |
19 | 华一卉, 单琪媛, 丛晓东, 等 . 共晶法在天然植物成分的提取纯化中的应用——以大黄酸为例[J]. 中华中医药学刊, 2013, 31(4): 727-730. |
HUA Yihui , SHAN Qiyuan , CONG Xiaodong , et al . Application of an effective cocrystal method in Chinese medicinal plant components preparative isolation and purification-preparative isolation and purification of Rhein by cocrystal method[J]. Chinese Archives of Traditional Chinese Medicine, 2013, 31(4):727-730. | |
20 | LEE T, CHEN H R , LIN H Y , et al . Continuous co-crystallization as a separation technology: the study of 1∶2 co-crystals of phenazine-vanillin[J]. Crystal Growth & Design, 2012, 12 (12): 5897-5907. |
21 | 黄蓓, 杨立荣, 吴坚平 . 手性拆分技术的工业应用[J]. 化工进展, 2002, 21(6): 375-380. |
HUANG Bei , YANG Lirong , WU Jianping . Chiral resolutioin in industry practice [J]. Chemical Industry and Engineering Progress, 2002, 21(6): 375-380. | |
22 | SPRINGUEL G , LEYSSENS T . Innovative chiral resolution using enantiospecific co-crystallization in solution[J]. Crystal Growth & Design, 2012, 12(7): 3374-3378. |
23 | CAIRA M R , NASSIMBENI L R , SCOTT J L , et al . Resolution of optical isomers of 4-amino-p-chlorobutyric acid lactam by co-crystallization[J]. Journal of Chemical Crystallography, 1996, 26(2): 117-122. |
24 | AKAZOME M , NOGUCHI M , TANAKA O , et al . Enantiomeric recognition of alkyl phenyl sulfoxides by crystalline (R)-phenylglycyl-(R)- phenylglycine [J]. Tetrahedron, 1997, 53: 8315-8322. |
25 | BORTOLINI O , FANTIN G , FOGAGNOLO M , et al . Optical resolution of sulfoxides by inclusion in host dehydrocholic acid[J]. Chemical Communications, 2000(5): 365-366. |
26 | KLUSSMANN M , IZUMI T , WHITE A J P , et al . Emergence of solution-phase homochirality via crystal engineering of amino acids[J]. Journal of the American Chemical Society, 2007, 129: 7657-7660. |
27 | IWAMA S , KUYAMA K , MORI Y , et al . Highly efficient chiral resolution of DL-arginine by cocrystal formation followed by recrystallization under preferential-enrichment conditions[J]. Chemistry: A European Journal, 2014, 20: 10343-10350. |
28 | GONNADE R G , IWAMA S , MORI Y , et al . Observation of efficient preferential enrichment phenomenon for a cocrystal of (DL)-phenylalanine and fumaric acid under nonequilibrium crystallization conditions[J]. Crystal Growth & Design, 2011, 11: 607-615. |
29 | MANOJ K , TAKAHASHI H , MORITA Y , et al . Preferential enrichment of DL-leucine using cocrystal formation with oxalic acid under nonequilibrium crystallization conditions [J]. Chirality, 2015, 27: 405-410. |
30 | SCOTT J L , HACHIKEN S , TANAKA K . Efficient isomeric enrichment in cocrystals of cyclohexanediamines and low molecular weight diols [J]. Crystal Growth & Design, 2008, 8: 2447-2452. |
31 | ROY B N, SINGH G P , SRIVASTAVA D , et al . A novel method for large-scale synthesis of lamivudine through cocrystal formation of racemic lamivudine with (S)-(-)-1,1’-bi(2-naphthol) [(S)-(BINOL)][J]. Organic Process Research & Development, 2009, 13 (3): 450-455. |
32 | SÁNCHEZ-GUADARRAMA O , MENDOZA-NAVARRO F , CEDILLO-CRUZ A , et al . Chiral resolution of RS-praziquantel via diastereomeric co-crystal pair formation with Lmalic acid[J]. Crystal Growth & Design, 2016, 16: 307-314 |
33 | HARMSEN B , LEYSSENS T . Enabling enantiopurity: combining racemization and dual-drug cocrystal resolution[J]. Crystal Growth & Design, 2018, 18, 3654-3660. |
34 | HARMSEN B , LEYSSENS T . Dual-drug chiral resolution: enantiospecific cocrystallization of (S)-ibuprofen using levetiracetam[J]. Crystal Growth & Design, 2018, 18: 441-448. |
35 | HE L C , LIANG Z R , YU G J . Green and efficient resolution of racemic ofloxacin using tartaric acid derivatives XT forming cocrystal in aqueous solution[J]. Crystal Growth & Design, 2018, 18: 5008-5020. |
36 | SPRINGUEL G , ROBEYNS K , NORBERG B , et al . Cocrystal formation between chiral compounds: how cocrystals differ from salts[J]. Crystal Growth & Design, 2014, 14: 3996-4004. |
37 | GEORGE F , TUMANOV N , NORBERG B , et al . Does chirality influence the tendency toward cocrystal formation?[J]. Crystal Growth & Design, 2014, 14(6): 2880-2892. |
38 | EDDLESTON M D , ARHANGELSKIS M , FRIŠČIĆ T , et al . Solid state grinding as a tool to aid enantiomeric resolution by cocrystallisation[J]. Chemical Communications, 2012, 48: 11340-11342. |
13 | URBANUS J , ROELANDS C P M , VERDOES D , et al . Co-crystallization as a separation technology: controlling product concentrations by co-crystals [J]. Crystal Growth & Design, 2010, 10(3): 1171-1179. |
14 | HSI K H Y, CHADWICK K , FRIED A , et al . Separation of impurities from solution by selective co-crystal formation [J].CrystEngComm, 2012, 14: 2386-2388. |
15 | HSI K H Y, CHADWICK K , FRIED A , et al . Purification of structurally similar compounds by the formation of impurity co-former complexes in solution[J]. Crystal Growth & Design, 2013, 13: 1577-1582. |
16 | HSI K H Y, CONCEPCION A J , KENNY M , et al . Purification of amoxicillin trihydrate by impurity conformer complexation in solution[J] CrystEngComm, 2013, 15: 6776-6781. |
39 | WANG N , HUANG X , GONG H , et al . Thermodynamic mechanism of selective cocrystallization explored by MD simulation and phase diagram analysis[J]. AIChE Journal, 2019, 65(5): e16570. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[3] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[4] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[5] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[8] | 董佳宇, 王斯民. 超声强化对二甲苯结晶特性及调控机理实验[J]. 化工进展, 2023, 42(9): 4504-4513. |
[9] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[10] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[11] | 朱传强, 茹晋波, 孙亭亭, 谢兴旺, 李长明, 高士秋. 固体高分子脱硝剂选择性非催化还原NO x 特性[J]. 化工进展, 2023, 42(9): 4939-4946. |
[12] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[13] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[14] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[15] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |