化工进展 ›› 2020, Vol. 39 ›› Issue (1): 233-249.DOI: 10.16085/j.issn.1000-6613.2019-0648
收稿日期:
2019-04-24
出版日期:
2020-01-05
发布日期:
2020-01-14
通讯作者:
裴强
作者简介:
裴强(1980—),男,理学博士,副教授,研究方向为超分子自组装。E-mail:基金资助:
Qiang PEI(),Aixiang DING,Mingli YANG,Guo XU,Wenhao XU
Received:
2019-04-24
Online:
2020-01-05
Published:
2020-01-14
Contact:
Qiang PEI
摘要:
氢键具有方向性、较强的结合力、动态可逆性以及可预测的识别性能等优点,在超分子聚合物的构筑与性能改善方面有着广泛的应用。本文根据氢键结合位点的数目,系统地综述了主链型、侧链型和结合型氢键超分子聚合物的研究进展;重点阐述了各类氢键结合单元的设计及其在改善聚合物性能中的作用;同时介绍了氢键结合单元在纳米材料、凝胶、液晶等众多领域的应用。在此基础上,展望了未来氢键型超分子聚合物的研究方向,主要包括设计合成能够在生理条件下稳定的多重氢键结合单元以及深化组装机理的研究。
中图分类号:
裴强,丁爱祥,杨明丽,徐果,徐文豪. 氢键型超分子聚合物[J]. 化工进展, 2020, 39(1): 233-249.
Qiang PEI,Aixiang DING,Mingli YANG,Guo XU,Wenhao XU. Hydrogen-bonding supramolecular polymers[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 233-249.
1 | 裴强. 基于氢键的超分子自组装:缔合方式及稳定性[J]. 信阳师范学院(自然科学版), 2018, 31(1): 160-167. |
PEI Q. Supramolecular self-assembly via hydrogen bonding: combined pattern and stability[J]. Journal of Xinyang Normal University Natural Science Edition, 2018, 31(1): 160-167. | |
2 | 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274. |
PEI Q, DING A X. The design and application of quadruple hydrogen bonded systems[J]. Progress in Chemistry, 2019, 31(2/3): 258-274. | |
3 | LEHN J M. Review supramolecular polymer chemistry—scope and perspectives[J]. Polym. Int., 2002, 51(10): 825-839. |
4 | WILSON A J. Non-covalent polymer assembly using arrays of hydrogen-bonds[J]. Soft Matter, 2007, 3(4): 409-425. |
5 | FOX J D, ROWAN S J. Supramolecular polymerizations and main-chain supramolecular polymers[J]. Macromolecules, 2009, 42(18): 6823-6835. |
6 | KATO T, FRÉCHET J M J. New approach to mesophase stabilization through hydrogen-bonding molecular interactions in binary mixtures[J]. J. Am. Chem. Soc., 1989, 111(22): 8533-8534. |
7 | KATO T, FRÉCHET J M J, WILSON P G, et al. Hydrogen-bondedliquid crystals novel mesogens incorporating nonmesogenic bipyridyl compounds through complexation between H-bond donor and acceptor moieties[J]. Chem. Mater., 1993, 5(8): 1094-1100. |
8 | KATO T, FUKUMASA M, FRÉCHET J M J. Supramolecular liquid-crystalline complexes exhibiting room-temperature mesophases and electrooptic effects. hydrogen-bondedmesogens derived from alkylpyridines and benzoic acids[J]. Chem. Mater., 1995, 7(2): 368-372. |
9 | LEE C M, GRIFFIN A C. Hydrogen bonding as the origin of both liquid crystallinity and polymer formation in some supramolecular materials[J]. Macromol. Symp., 1997, 117(1): 281-290. |
10 | SINGH A, LVOV Y, QADRI S B. Formation of supramolecular assemblies by complementary association of octadecyloxy tartaric acid and bispyridyls[J]. Chem. Mater., 1999, 11(11): 3196-3200. |
11 | LEE M, CHO B K, KANG Y S, et al. Hydrogen-bonding-mediated formation of supramolecular rod-coil copolymers exhibiting hexagonal columnar and bicontinuous cubic liquid crystalline assemblies[J]. Macromolecules, 1999, 32(25): 8531-8537. |
12 | LU X, HE C, GRIFFIN A C. Crystallization and phase behaviors of multicomponent supramolecular complexes through hydrogen-bonding association[J]. Macromolecules, 2003, 36(14): 5195-5200. |
13 | POURCAIN C B S, GRIFFIN A C. Thermoreversible supramolecular networks with polymeric properties[J]. Macromolecules, 1995, 28(12): 4116-4121. |
14 | WIEGEL K N, GRIFFIN A C, BLACK M S, et al. Memory effects in supramolecular networks of diacids and polyfunctional pyridine derivatives[J]. J. Appl. Polym. Sci., 2004, 92(5): 3097-3106. |
15 | KIHARA H, KATO T, URYU T, et al. Supramolecular liquid-crystalline networks built by self-assembly of multifunctional hydrogen-bonding molecules[J]. Chem. Mater., 1996, 8(4): 961-968. |
16 | GONG B, YAN Y, ZENG H, et al. A new approach for the design of supramolecular recognition units: hydrogen-bonded molecular duplexes[J]. J. Am. Chem. Soc., 1999, 121(23): 5607-5608. |
17 | YANG X, HUA F, YAMATO K, et al. Supramolecular AB diblock copolymers[J]. Angew. Chem.Int. Ed., 2004, 43(47): 6471-6474. |
18 | HUA F, YANG X, GONG B, RUCKENSTEIN E. Preparation of oligoamide-ended poly(ethylene glycol) and hydrogen-bonding-assisted formation of aggregates and nanoscale fibers[J]. J. Polym. Sci., Part A: Polym. Chem., 2005, 43(5): 1119-1128. |
19 | YANG Q, BAI L, ZHANG Y, et al. Dynamic covalent diblock copolymers: instructed coupling, micellation and redox responsiveness[J]. Macromolecules, 2014, 47(21): 7431-7441. |
20 | YANG Q, TAN L, HE C, et al. Redox-responsive micelles self-assembled from dynamic covalent block copolymers for intracellular drug delivery[J]. Acta Biomaterialia, 2015, 17(19): 193-200. |
21 | YANG Q, HE C, XU Y, et al. Chitosan oligosaccharide copolymer micelles with double disulphide linkage in the backbone associated by H-bonding duplexes for targeted intracellular drug delivery[J]. Polym. Chem., 2015, 6(9): 1454-1464. |
22 | YAMAUCHI K, LIZOTTE J R, LONG T E. Synthesis and characterization of novel complementary multiple-hydrogen bonded (CMHB) macromolecules via a michael addition[J]. Macromolecules, 2002, 35(23): 8745-8750. |
23 | AMBADE A V, YANG S K, WECK M. Supramolecular ABC triblock copolymers[J]. Angew. Chem. Int. Ed., 2009, 48(16): 2894-2898. |
24 | YANG S K, AMBADE A V, WECK M. Supramolecular ABC triblock copolymers via one-pot, orthogonal self-assembly[J]. J. Am. Chem. Soc., 2010, 132(5): 1637-1645. |
25 | GULIK-KRZYWICKI T, FOUQUEY C, LEHN J M. Electron microscopic study of supramolecular liquid crystalline polymers formed by molecular-recognition-directed selfassembly from complementary chiral components[J]. Proc. Natl. Acad. Sci. USA, 1993, 90(1): 163-167. |
26 | KOTERA M, LEHN J M, VIGNERON J P. Self-assembled supramolecular rigid rods[J]. J. Chem. Soc., Chem. Commun., 1994, 30(2): 197-199. |
27 | KOTERA M, LEHN J M, VIGNERON J P. Design and synthesis of complementary components for the formation of self-assembled supramolecular rigid rods[J]. Tetrahedron, 1995, 51(7): 1953-1972. |
28 | KUNZ M J, HAYN G, SAF R, et al. Hydrogen-bonded supramolecular poly(ether ketone)s[J]. J. Polym. Sci. Part A: Polym. Chem., 2004, 42(3): 661-674. |
29 | BINDER W H, KUNZ M J, INGOLIC E. Supramolecular poly(ether ketone)-polyisobutylene pseudo-block copolymers[J]. J. Polym. Sci. Part A: Polym. Chem., 2004, 42(1): 162-172. |
30 | CHENG C C, LIN I H, YEN Y C, et al. New self-assembled supramolecular polymers formed by self-complementary sextuple hydrogen bond motifs[J]. RSC Adv., 2012, 2(26): 9952-9957. |
31 | WANG J H, ALTUKHOV O, CHENG C C, et al. Supramolecular structures of uracil-functionalized PEG with multi-diamidopyridine POSS through complementary hydrogen bonding interactions[J]. Soft Matter, 2013, 9(21): 5196-5206. |
32 | LEE S H, OUCHI M, SAWAMOTO M. Chain center-functionalized amphiphilic block polymers: complementary hydrogen bond self-assembly in aqueous solution[J]. J. Polym. Sci., Part A: Polym. Chem., 2013, 51(21): 4498-4504. |
33 | LEE S H, OUCHI M, SAWAMOTO M. Functionalization at the central position of vinyl polymer chains: highly associable multipoint hydrogen bonds for complementary self-assemblies[J]. Macromol. Rapid Commun., 2014, 35(4): 431-436. |
34 | WU Q, TANG X, LIU X, et al. Thermo/pH dual responsive mixed-shell polymeric micelles based on the complementary multiple hydrogen bonds for drug delivery[J]. Chem. Asian J., 2016, 11(1): 112-119. |
35 | ZHU B, FENG Z, ZHENG Z, et al. Thermoreversible supramolecular polyurethanes with self- complementary quadruple hydrogen-bonded end groups[J]. Appl. Polym. Sci., 2012, 123(3): 1755-1763. |
36 | SIJBESMA R P, BEIJER F H, BRUNSVELD L, et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding[J]. Science, 1997, 278(5343): 1601-1604. |
37 | LANGE R F M, GURP M V, MEIJER E W. Hydrogen-bonded supramolecular polymer networks[J]. Polym. Sci., Part A: Polym. Chem., 1999, 37(19): 3657-3670. |
38 | FOLMER B J B, CAVINI E, SIJBESMA R P, et al. Photo-induced depolymerization of reversible supramolecular polymers[J]. Chem. Commun., 1998, 34(17): 1847-1848. |
39 | HIRSCHBERG J H K K, BEIJER F H, AERT H A VAN, et al. Supramolecular polymers from linear telechelic siloxanes with quadruple-hydrogen-bonded units[J]. Macromolecules, 1999, 32(8): 2696-2705. |
40 | FOLMER B J B, SIJBESMA R P, VERSTEEGEN R M, et al. Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon[J]. Adv. Mater., 2000, 12(12): 874-878. |
41 | FOLMER B J B, SIJBESMA R P, MEIJER E W. Unexpected entropy-driven ring-opening polymerization in a reversible supramolecular system[J]. J. Am. Chem. Soc., 2001, 123(9): 2093-2094. |
42 | KEIZER H M, KESSEL R VAN, SIJBESMA R P, et al. Scale-up of the synthesis of ureidopyrimidinone functionalized telechelic poly(ethylenebutylene)[J]. Polymer, 2003, 44(19): 5505-5511. |
43 | KEIZER H M, SIJBESMA R P, JANSEN J F G A, et al. Polymerization-induced phase separation using hydrogen-bonded supramolecular polymers[J]. Macromolecules, 2003, 36(15): 5602-5606. |
44 | XU J F, CHEN Y Z, WU D, et al. Photoresponsive hydrogen-bonded supramolecular polymers based on a stiff stilbene Unit[J]. Angew. Chem.Int. Ed., 2013, 52(37): 9738-9742. |
45 | XU J F, NIU L Y, CHEN Y Z, et al. Hydrogen bonding directed self-assembly of small-molecule amphiphiles in water[J]. Org. Lett., 2014, 16(15): 4016-4019. |
46 | PENG H Q, SUN C L, XU J F, et al. Convenient synthesis of functionalized bis-ureidopyrimidinones based on thiol-yne reaction[J]. Chem. Eur. J., 2014, 20(37): 11699-11702. |
47 | PENG H Q, XU J F, CHEN Y Z, et al. Water-dispersible nanospheres of hydrogen-bonded supramolecular polymers and their application for mimicking light-harvesting systems[J]. Chem. Commun., 2014, 50(11): 1334-1337. |
48 | WANG R F, PENG H Q, CHEN P Z, et al. A hydrogen-bonded-supramolecular-polymer-based nanoprobe for ratiometric oxygen sensing in living cells[J]. Adv. Funct. Mater., 2016, 26(30): 5419-5425. |
49 | PENG H Q, SUN C L, NIU L Y, et al. Supramolecular polymeric fluorescent nanoparticles based on quadruple hydrogen bonds[J]. Adv. Funct. Mater., 2016, 26(30): 5483-5489. |
50 | YAN X Z, LI S J, POLLOCK J B, et al. Supramolecular polymers with tunable topologies via hierarchical coordination-driven self-assembly and hydrogen bonding interfaces[J]. Proc. Natl. Acad. Sci. USA, 2013, 110(39): 15585-15590. |
51 | YAN X, JIANG B, COOK T R, et al. Dendronized organoplatinum(Ⅱ) metallacyclic polymers constructed by hierarchical coordination-driven self-assembly and hydrogen-bonding interfaces[J]. J. Am. Chem. Soc., 2013, 135(45): 16813-16816. |
52 | EL-GHAYOURY A, PEETERS E, SCHENNING A P H J, et al. Quadruple hydrogen bonded oligo(p-phenylene vinylene) dimers[J]. Chem. Commun., 2000, 36(19): 1969-1970. |
53 | RISPENS M T, SÁNCHEZ L, KNOL J, et al. Supramolecular organization of fullerenes by quadruple hydrogen bonding[J]. Chem. Commun., 2001, 37(18): 161-162. |
54 | SÁNCHEZ L, RISPENS M T, HUMMELEN J C. A supramolecular array of fullerenes by quadruple hydrogen bonding[J]. Angew. Chem.Int. Ed., 2002, 41(5): 838-840. |
55 | GONZÁLEZ J J, GONZÁLEZ S, PRIEGO E M, et al. A new approach to supramolecular C60-dimers based in quadruple hydrogen bonding[J]. Chem. Commun., 2001, 37(18): 163-164. |
56 | SÁNCHEZ L, MARTÍN N, GULDI D M. Hydrogen-bonding motifs in fullerene chemistry[J]. Angew. Chem.Int. Ed., 2005, 44(34): 5374-5382. |
57 | ZOU S, ZHANG Z, FÖRCH R, et al. Tunable complex stability in surface molecular recognition mediated by self-complementary quadruple hydrogen bonds[J]. Langmuir, 2003, 19(21): 8618-8621. |
58 | HIRSCHBERG J H K K, BRUNSVELD L, RAMZI A, et al. Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs[J]. Nature, 2000, 407(6801): 167-170. |
59 | BRUNSVELD L, VEKEMANS J A J M, HIRSCHBERG J H K K, et al. Hierarchical formation of helical supramolecular polymers via stacking of hydrogen-bonded pairs in water[J]. Proc. Natl. Acad. Sci. USA, 2002, 99(8): 4977-4982. |
60 | PARK T, ZIMMERMAN S C. A supramolecular multi-block copolymer with a high propensity for alternation[J]. J. Am. Chem. Soc., 2006, 128(43): 13986-13987. |
61 | LIU R, CHENG S, BAKER E S, et al. Surprising impact of remote groups on the folding-unfolding and dimer-chain equilibria of bifunctional H-bonding unimers[J]. Chem. Commun., 2016, 52(19): 3773-3776. |
62 | KATO T, FRÉCHET J M J. Stabilization of a liquid-crystalline phase through noncovalent interaction with a polymer side chain[J]. Macromolecules, 1989, 22(7): 3818-3819. |
63 | KATO T, KIHARA H, UJIIE S, et al. Structures and properties of supramolecular liquid-crystalline side-chain polymers built through intermolecular hydrogen bonds[J]. Macromolecules, 1996, 29(27): 8734-8739. |
64 | KATO T, HIROTA N, FUJISHIMA A, et al. Supramolecular hydrogen-bonded liquid-crystalline polymer complexes. Design of side-chain polymers and a host-guest system by noncovalent interaction[J]. J. Polym. Sci., Part A: Polym. Chem., 1996, 34(1): 57-62. |
65 | KAWAKAMI T, KATO T. Use of intermolecular hydrogen bonding between imidazolyl moieties and carboxylic acids for the supramolecular self-association of liquid-crystalline side-chain polymers and networks[J]. Macromolecules, 1998, 31(14): 4475-4479. |
66 | BAZUIN C G, BRANDYS F A, EVE T M, et al. Use of noncovalent interactions to form novel liquid crystalline polymeric materials[J]. Macromol. Symp., 1994,84(1): 183-196. |
67 | LUYTEN M C, EKENSTEIN G O R A VAN, BRINKE G T, et al. Crystallization and cocrystallization in supramolecular comb copolymer-like systems: blends of poly(4-vinylpyridine) and pentadecylphenol[J]. Macromolecules, 1999, 32(13): 4404-4410. |
68 | SHIBAEV P V, JENSEN S L, ANDERSEN P, et al. Multicomponent hydrogen-bonded liquid crystalline mixtures[J]. Macromol. Rapid Commun., 2001, 22(7): 493-497. |
69 | AMBROŽIČ G, ŽIGON M. Supramolecular liquid-crystalline polyurethane[J]. Macromol. Rapid Commun., 2000, 21(1): 53-56. |
70 | AMBROŽIČ G, ŽIGON M. Hydrogen-bonded polyurethane complexes based on 4-alkoxybenzoic acids as the low molar mass components[J]. Polym Int., 2005, 54(3): 606-613. |
71 | KATO T, KIHARA H, KUMAR U, et al. A liquid-crystalline polymer network built by molecular self-assembly through intermolecular hydrogen bonding[J]. Angew. Chem.Int. Ed., 1994, 33(15/16): 1644-1645. |
72 | SATO A, KATO T, URYU T. Hydrogen-bonded liquid-crystalline polymer blends formed from a thermotropic polyester containing a lateral pyridyl group and poly(4-vinyl phenol)[J]. J. Polym. Sci., Part A: Polym. Chem., 1996, 34(3): 503-505. |
73 | KATO T, NAKANO M, MOTEKI T, et al. Supramolecular liquid-crystalline side-chain polymers built through a molecular recognition process by double hydrogen bonds[J]. Macromolecules, 1995, 28(26): 8875-8876. |
74 | CHENG C C, HUANG C F, YEN Y C, et al. A “plug and play”polymer through biocomplementary hydrogen bonding[J]. J. Polym. Sci., Part A: Polym. Chem., 2008, 46(19): 6416-6424. |
75 | WU Y C, KUO S W. Complementary multiple hydrogen bonding interactions mediate the self-assembly of supramolecular structures from thymine-containing block copolymers and hexadecyladenine[J]. Polym. Chem., 2012, 3(11): 3100-3111. |
76 | WU Y R, WU Y C, KUO S W. Transforming the self-assembled structures of diblock copolymer/POSS nanoparticle composites through complementary multiple hydrogen bonding interactions[J]. Macromol. Chem. Phys., 2013, 214(13): 1496-1503. |
77 | BAZZI H S, SLEIMAN H F. Adenine-containing block copolymers via ring-opening metathesis polymerization: synthesis and self-assembly into rod morphologies[J]. Macromolecules, 2002, 35(26): 9617-9620. |
78 | CHENG C C, YEN Y C, YE Y S, et al. Biocomplementary interaction behavior in DNA-like and RNA-like polymers[J]. J. Polym. Sci., Part A: Polym. Chem., 2009, 47(23): 6388-6395. |
79 | LANGE R F M, MEIJER E W. Supramolecular polymer interactions using melamine[J]. Macromol. Symp., 1996, 102(1): 301-308. |
80 | LANGE R F M, MEIJER E W. Supramolecular polymer interactions based on the alternating copolymer of styrene and maleimide[J]. Macromolecules, 1995, 28(3): 782-783. |
81 | DRECHSLER U, THIBAULT R J, ROTELLO V M. Formation of recognition-induced polymersomes using complementary rigid random copolymers[J]. Macromolecules, 2002, 35(26): 9621-9623. |
82 | KUO S W, TSAI H T. Complementary multiple hydrogen-bonding interactions increase the glass transition temperatures to PMMA copolymer mixtures[J]. Macromolecules, 2009, 42(13): 4701-4730. |
83 | KUO S W, HSU C H. Miscibility enhancement of supramolecular polymer blends through complementary multiple hydrogen bonding interactions[J]. Polym. Int., 2010, 59(7): 998-1005. |
84 | HUANG K W, KUO S W. High-heteronucleobase-content polystyrene copolymers prepared using click chemistry form supramolecular structures with melamine through complementary multiple hydrogen-bonding interactions[J]. Macromol. Chem. Phys., 2012, 213(14): 1509-1519. |
85 | CHEN Y, JONES S T, HANCOX I, et al. Multiple hydrogen-bond array reinforced cellular polymer films from colloidal crystalline assemblies of soft latex particles[J]. ACS Macro Lett., 2012, 1(5): 603-608. |
86 | CHEN Y, BALLARD N, BON S A F. Waterborne polymer nanogels non-covalently crosslinked by multiple hydrogen bond arrays[J]. Polym. Chem., 2013, 4(2): 387-392. |
87 | PARK T, ZIMMERMAN S C, NAKASHIMA S. A Highly stable quadruply hydrogen-bonded heterocomplex useful for supramolecular polymer blends[J]. J. Am. Chem. Soc., 2005, 127(18): 6520-6521. |
88 | PARK T, ZIMMERMAN S C. Formation of a miscible supramolecular polymer blend through self-assembly mediated by a quadruply hydrogen-bonded heterocomplex[J]. J. Am. Chem. Soc., 2006, 128(35): 11582-11590. |
89 | PARK T, ZIMMERMAN S C. Interplay of fidelity, binding strength, and structure in supramolecular polymers[J]. J. Am. Chem. Soc., 2006, 128(44): 14236-14237. |
90 | PARK T, ZIMMERMAN S C. A supramolecular multi-block copolymer with a high propensity for alternation[J]. J. Am. Chem. Soc., 2006, 128(43):13986-13987. |
91 | LI Y, PARK T, QUANSAH J K, et al. Synthesis of a redox-responsive quadruple hydrogen-bonding unit for applications in supramolecular chemistry[J]. J. Am. Chem. Soc., 2011, 133(43): 17118-17121. |
92 | ZHANG Y, ANDERSON C A, ZIMMERMAN S C. Quadruply hydrogen bonding modules as highly selective nanoscale adhesive agents[J]. Org. Lett., 2013, 15(14): 3506-3509. |
93 | ANDERSON C A, JONES A R, BRIGGS E M, et al. High-affinity DNA base analogs as supramolecular, nanoscale promoters of macroscopic adhesion[J]. J. Am. Chem. Soc., 2013, 135(19): 7288-7295. |
94 | KATO T, IHATA O, UJIIE S, et al. Self-assembly of liquid-crystalline polyamide complexes through the formation of double hydrogen bonds between a 2,6-bis(amino)pyridine moiety and benzoic acids[J]. Macromolecules, 1998, 31(11): 3551-3555. |
95 | IHATA O, YOKOTA H, KANIE K, et al. Induction of mesophases through the complexation between benzoic acids with lateral groups and polyamides containing a 2,6-diaminopyridine moiety[J]. Liquid Crystals, 2000, 27(1): 69-74. |
[1] | 席慧敏, 钱坤, 俞科静, 李杰, 张中威, 熊自明, 张耀良. 基于二硫键和氢键的自修复聚氨酯弹性体的制备、改性及其应用[J]. 化工进展, 2023, 42(2): 934-943. |
[2] | 唐春霞, 李萌, 王玉玺, 宗永忠, 付少海. Cr(Ⅵ)去除用功能化纤维素纳米材料的结构设计研究进展[J]. 化工进展, 2023, 42(2): 585-594. |
[3] | 徐娜, 王国栋, 陶亚楠. 柔性可穿戴压阻式压力传感器研究进展[J]. 化工进展, 2023, 42(10): 5259-5271. |
[4] | 叶玉玺, 丁晓茜, 池华睿, 朱楷伦, 刘杨, 王凌云, 郭庆杰. 疏水性低共熔溶剂氢键交互作用调控及萃取铜性能[J]. 化工进展, 2022, 41(S1): 397-406. |
[5] | 孙国旗, 王维, 宋兵, 王亮, 邵瑞琪, 徐志伟, 罗仕刚, 闫民杰, 王立晶, 钱晓明. 聚乙烯醇热塑改性研究进展[J]. 化工进展, 2022, 41(S1): 293-306. |
[6] | 边宇, 张百超, 郑红. 多级孔COFs材料的设计、合成及应用[J]. 化工进展, 2022, 41(9): 4866-4883. |
[7] | 岳孟, 郑琼, 阎景旺, 张华民, 李先锋. 液流电池流场结构设计与优化研究进展[J]. 化工进展, 2021, 40(9): 4853-4868. |
[8] | 王玉龙, 胡国胜, 张静婷, 白静静, 吕秦牛, 李振中. 基于双硫键和氢键协效的高性能自修复聚氨酯脲的研制[J]. 化工进展, 2021, 40(1): 324-331. |
[9] | 王学科, 沈义伟, 赵洪滨, 曹岭, 陈山, 贾彩, 谢晓峰. 旋涡式氢气循环泵的设计及性能分析[J]. 化工进展, 2020, 39(S2): 89-96. |
[10] | 倪永涛, 赵钦新, 桂雍, 王云刚, 邵怀爽. 两级低压引射器的结构设计与数值分析[J]. 化工进展, 2020, 39(S1): 69-76. |
[11] | 许晓芝, 李彪, 施凯强, 董思源, 靳祖超, 韩景宾. LDHs基气体阻隔薄膜材料的研究进展[J]. 化工进展, 2020, 39(6): 2177-2186. |
[12] | 易兰, 李文英, 冯杰. 离子液体/低共熔溶剂在煤基液体分离中的应用[J]. 化工进展, 2020, 39(6): 2066-2078. |
[13] | 覃发梅, 邱学青, 孙川, 丁子先, 方志强. 纳米纤维素去除水体系重金属离子的研究进展[J]. 化工进展, 2019, 38(07): 3390-3401. |
[14] | 于宾, 赵晓明, 孙天. 基于纤维取向的纳米纤维滤料设计及其性能[J]. 化工进展, 2018, 37(10): 3966-3973. |
[15] | 刘南, 祁峰, 李力, 赵雪冰, 刘德华, 黄建忠. 纤维素降解辅助蛋白及其作用机理研究进展[J]. 化工进展, 2018, 37(03): 1118-1129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |