化工进展 ›› 2020, Vol. 39 ›› Issue (1): 119-128.DOI: 10.16085/j.issn.1000-6613.2019-0180

• 能源加工与技术 • 上一篇    下一篇

褐煤氧化和气化反应协同作用下夹带流反应器的建模

程相龙1,2(),郭晋菊1,2(),张海永3,孙加亮3,张延兵1,2,宋成建1,2   

  1. 1. 河南城建学院材料与化工学院,河南 平顶山 467036
    2. 河南城建学院煤盐资源高效利用河南省工程实验室,河南 平顶山 467036
    3. 中国矿业大学(北京)化学与环境工程学院,北京 100083
  • 收稿日期:2019-01-23 出版日期:2020-01-05 发布日期:2020-01-14
  • 通讯作者: 郭晋菊
  • 作者简介:程相龙(1983—),男,博士,研究方向为煤炭热解和气化。E-mail:chengxianglong420@163.com
  • 基金资助:
    国家自然科学基金(21506251);河南城建学院青年骨干教师选拔及资助项目(20171015);煤盐资源高效利用河南省工程实验室(河南城建学院)开放基金

Modeling of the entrained flow gasification reactor under the synergistic action of ligniteoxidation and steam gasification

Xianglong CHENG1,2(),Jinju GUO1,2(),Haiyong ZHANG3,Jialiang SUN3,Yanbing ZHANG1,2,Chengjian SONG1,2   

  1. 1. School of Materials and Chemical Engineering, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
    2. Henan Province Engineering Laboratory of Coal-Salt Resources Efficient Utilization, Henan University of Urban Construction, Pingdingshan 467036, Henan, China
    3. School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
  • Received:2019-01-23 Online:2020-01-05 Published:2020-01-14
  • Contact: Jinju GUO

摘要:

为了建立?80mm×3000mm下行夹带流煤气化反应器模型,以胜利褐煤为原料,在该反应器中进行了N2、O2、H2O、H2O+O2气氛下800℃/900℃气化实验,研究了流场分布、主要反应发生区域,并结合反应机理和缩合模型推导了不同速控步/气化气氛下C-O2氧化和C-H2O气化速率方程。结果发现,实验条件下,喷嘴附近的射流区及其周围的回流区仅占反应器高度的5%,气相主要以平推流流动;热解和燃烧反应同时发生,反应器分为热解燃烧区和气化区;气膜扩散控制下的C-O2氧化速率方程和化学反应控制时C-H2O气化速率方程与实验数据吻合较好;相对H2O气氛,H2O+O2气氛下C-H2O气化反应的表观气化反应速率常数明显较大,尤其在高温下,建模时需分别考虑H2O和H2O+O2气氛下气化速率。这主要是由于氧化反应的开孔/扩孔作用使碳颗粒微孔数量、比表面积、孔容增加,促进了C-H2O气化反应。采用MATLAB编程拟合求解模型中未知参数和模型,对12组实验(60个数据点)进行预测,85%预测值误差小于20%,70%预测值误差小于10%。对褐煤转化率的预测,75%预测值误差小于4.6%。建立的反应器模型误差较小,为反应器设计和放大奠定基础。

关键词: 气流床, 协同作用, 流动特点, 气膜扩散, 反应速率, 模型

Abstract:

Shengli lignite was gasified at 800℃/900℃ under N2, O2, H2O, H2O+O2 atmospheres in a simulated entrained-flow reactor (?80mm×3000mm). And kinetics of main reactions & flow characteristics of gas/solid were discussed, in order to build coal gasification model. The results showed that: the gas phase flow was divided into 3 zones, jet zone, recirculation zone and downstream zone, but the height of jet zone and recirculation zone only was 5% of that of reactor and could be neglected; pyrolysis and combustion occur simultaneously; the oxidation reaction (OR) and the steam gasification reaction (SGR) were controlled by membrane diffusion and chemical reaction respectively, and the rate equations derived from shrinking core model and reaction mechanism were in good agreement with experimental data. Moreover, the apparent rate constant of SGR in H2O+O2 atmosphere was obviously larger than that in H2O atmosphere, especially at high temperature. It might be caused by that OR could produce microspores and develop mesopores to promote SGR rate, i.e. OR and SGR had synergistic effect. The model built was solved by MATLAB and employed to predict 12 groups of experiments (60 data points). And the predicted values were in good agreement with the experimental values, with the error of less than 20% for 85% predicted values and less than10% for 70% predicted values. For the prediction of lignite conversion rate, the predicted values were in perfect agreement with the experimental values, with the error of less than 4.6% for 75% predicted values.

Key words: entrained-flow reactor, synergistic action, flow characteristics, membrane diffusion, dynamics, model

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn