[1] VLADIMÍR Kvasnička, ŠĚPÁN Sklenák, JIŘÍ Pospíchal. Application of high-order neural networks in chemistry[J]. Theoretica Chimica Acta, 1993, 86(3):257-267. [2] ZUPAN J. Can an instrument learn from experiments done by itself?[J]. Analytica Chimica Acta, 1990, 235(1):53-63. [3] 王延敏, 姚平经. 热偶精馏过程模拟优化方法的改进——人工神经网络-遗传算法[J]. 化工学报, 2003, 54(9):1246-1250. WANG Yangmin, YAO Pingjing. Advancement of simulation and optimization for thermally coupled distillation using neural network and network and genetic algorithm[J]. CIESC Journal, 2003, 54(9):1246-1250. [4] 施辰斐. 甲醇四塔精馏系统能效优化控制的研究[D]. 上海:上海交通大学, 2014. SHI Chenfei. Research on energy-efficiency optimization control of a four-column methanol distillation system[D]. Shanghai:Shanghai Jiao Tong University, 2014. [5] 王洪海, 张玉珍, 李月, 等. 基于正交设计和神经网络的萃取精馏工艺优化[J]. 河北工业大学学报, 2016, 45(3):48-56. WANG Honghai, ZHANG Yuzhen, LI Yue, et al. The orthogonal design and neural network optimization of the extractive distillation process[J]. Journal of Hebei University of Technology, 2016, 45(3):48-56. [6] OSUOLALE F N, ZHANG J. Thermodynamic optimization of atmospheric distillation unit[J]. Computers & Chemical Engineering, 2017, 103:201-209. [7] FITRIYANI N, NAHDLIYAH S D N, BIYANTO T R. Operational optimization of binary distillation column to achieve product quality using imperialist competitive algorithm(ICA)[C]//2016 6th International Annual Engineering Seminar(InAES). Yogyakarta, Indonesia, 2016. [8] TEHLAH, KAEWPRADIT, MUJTABA, et al. Artificial neural network based modelling and optimization of refined palm oil process[J]. Neurocomputing, 2016, 216:489-501. [9] 刘达民, 程岩编. 应用统计[M]. 北京:化学工业出版社, 2004:153-167. LIU Damin, CHENG Yanbian. Applied statistics[M]. Beijing:Chemical Industry Press, 2004:153-167. [10] 马春蕾, 翟丽军. 正交设计优化分壁式萃取精馏分离乙酸异丙酯-异丙醇的模拟研究[J]. 现代化工, 2018, 38(6):202-205. MA Chunlei, ZHAI Lijun. Simulation study on using orthogonal design to optimize extractive distillation separation of isopropyl acetate-isopropanol in dividing wall column[J]. Modern Chemical Industry, 2018, 38(6):202-205. [11] 唐建可, 马春蕾. 正交设计与响应面优化萃取精馏分离苯-噻吩的模拟[J]. 现代化工, 2016, 36(12):162-168. TANG Jianke, MA Chunlei. Optimization of the separation of benzene-thiophene by extractive distillation by orthogonal design and response surface method[J]. Modern Chemical Industry, 2016, 36(12):162-168. [12] PARDESHI P M, MUNGRAY A A, MUNGRAY A K. Determination of optimum conditions in forward osmosis using a combined Taguchi-Neural approach[J]. Chemical Engineering Research and Design, 2016, 109:215-225. [13] ALSALHY Q F, IBRAHIM S S, HASHIM F A. Experimental and theoretical investigation of air gap membrane distillation process for water desalination[J]. Chemical Engineering Research and Design, 2018, 130:95-108. [14] CHANG J S, HUANG Y B, HOU S S, et al. Formulation optimization of meloxicam sodium gel using response surface methodology[J]. International Journal of Pharmaceutics, 2007, 338(1/2):48-54. [15] SAMPAIO F C, DE FAVERI D, MANTOVANI H C, et al. Use of response surface methodology for optimization of xylitol production by the new yeast strain debaryomyces hansenii UFV-17[J]. Journal of Food Engineering, 2006, 76(3):376-386. [16] KHATTAR J, SHAILZA I S. Optimization of Cd removal by the cyanobacterium synechocystis pevalekii using the response surface methodology[J]. Process Biochemistry, 2009, 44(1):118-121. [17] MUNE M A, MINKA S R, MBOME I L. Response surface methodogy for optimisation of protein concentrate preparation from cowpea[J]. Food Chemistry, 2008, 110(3):735-741. [18] 王洪海, 崔小英, 钟宏伟, 等. RSM与流程模拟结合用于复杂塔操作参数优化[J]. 河北工业大学学报, 2011, 40(1):36-40. WANG Honghai, CUI Xiaoying, ZHONG Hongwei, et al. Optimization of operating parameters for a complex column combined with response surface methodology and process simulation[J]. Journal of Hebei University of Technology, 2011, 40(1):36-40. [19] 王洪海, 耿海腾, 郭佳佳, 等.正交设计与响应面优化法用于精馏系统的区别[J]. 河北工业大学学报, 2014, 43(1):50-54. WANG Honghai, GENG Haiteng, GUO Jiajia, et al. The distinction of orthogonal design and response surface methodology used to distillation system[J]. Journal of Hebei University of Technology, 2014, 43(1):50-54. [20] MEKALA M, GOLI V R. Optimization studies on a continuous catalytic reactive distillation column for methyl acetate production with response surface methodology[J]. Journal of the Taiwan institute of chemical engineers, 2016, 69:25-40. [21] LONG N V D, LEE M. Dividing wall column structure design using reponse surface methodology[J].Computers & Chemical Engineering, 2012, 37:119-124. [22] JIANG Peng, DU Wenli. Multi-objective modeling and optimization for scheduling of cracking furnace systems[J]. Chinese Journal of Chemical Engineering, 2017, 25(8):992-999. [23] INAMDAR S V. Multi-objective optimization of an industrial crude distillation unit using the elitist non-dominated sorting genetic algorithm[J]. Chemical Engineering, 2004. [24] CHEN Q L, YIN Q H, WANG S P. Energy-use analysis and improvement for delayed coking units[J]. Energy, 2004, 29(12/13/14/15):2225-2237. [25] 刘涛, 苏成利. 气体分馏装置的流程模拟及多目标优化[J]. 石油化工高等学校学报, 2013, 26(1):76-80. LIU Tao, SU Chengli. Simulation analysis and multi-objective optimization of gas fractionation unit[J]. Journal of Petrochemical Universities, 2013, 26(1):76-80. [26] LIAU C K, YANG C K, TSAI M T. Expert system of a crude oil distillation unit for process optimization using neural networks[J]. Expert Systems with Applications, 2004, 26(2):247-255. [27] 陶勇, 熊佐松, 刘海燕, 等. 基于原油TBP曲线校正的常减压装置操作的多目标优化[J]. 计算机与应用化学, 2014, 31(3):311-315. TAO Yong, XIONG Zuosong, LIU Haiyan, et al. Multl-objective optimization of atmospheric and vacuum distillation unit operation based on correction of oil TBP curve[J]. Computers and Applied Chemistry, 2014, 31(3):311-315. [28] 陶勇. 基于原油调和的常减压装置操作的多目标优化[D]. 武汉:武汉理工大学, 2014. TAO Yong. Multi-objective optimization of atmospheric and vacuum distillation unit operation based on oil blending[D]. Wuhan:Wuhan University of Technology, 2014. [29] DEB K, PRATAP A, AGARWAL S, et al. Evolutionary computation, a fast and elitist multi-objective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-186. [30] 张敏. 常减压蒸馏装置换热网络研究[D]. 大连:大连理工大学, 2016. ZHANG Min. Study on heat exchange network of atmospheric and vacuum distillation unit[D]. Dalian:Dalian University of Technology, 2016. [31] 王歌. 常减压蒸馏装置流程模拟及换热网络优化[D]. 青岛:中国石油大学(华东), 2015. WANG Ge. Simulation of atmospheric and vacuum distillation and optimization of the heat exchange network[D]. Qingdao:China University of Petroleum(East China), 2015. [32] Al-MUTAIRI E M, BABAQI B S. Energy optimization of integrated atmospheric and vacuum crude distillation units in oil refinery with light crude[J]. Asia-Pacific Journal of Chemical Engineering, 2014, 9(2):181-195. [33] FRIEDLER F. Process integration, modelling and optimisation for energy saving and pollution reduction[J]. Applied Thermal Engineering, 2010, 30(16):2270-2280. [34] 刘永强. 基于遗传算法的RGV动态调度研究[D]. 合肥:合肥工业大学, 2012. LIU Yongqiang. Dynamic schedule of rail-guided vehicles based on genetic algorithm[D]. Hefei:Hefei University of Technology, 2012. [35] 李微维. 常减压蒸馏流程模拟及换热网络优化设计[D]. 天津:河北工业大学, 2011. LI Weiwei. Simulation and retrofit design of an atmosphere-vacuum distillation unit and its heat-exchanger networks[D]. Tianjin:Hebei University of Technology, 2011. [36] 冯竹君, 吴晨露, 谢沈强, 等. 基于遗传算法的反应精馏塔的综合与设计[J]. 现代化工, 2016, 36(7):186-188, 190. FENG Zhujun, WU Chenlu, XIE Shenqiang, et al. Synthesis and design of reactive distillation columns based on genetic algorithm[J]. Modern Chemical Industry, 2016, 36(7):186-188, 190. [37] 冯琳, 毛志忠, 袁平. 一种改进的多目标粒子群优化算法及应用[J]. 控制与决策, 2012, 27(9):1313-1319. FENG Lin, MAO Zhizhong, YUAN Ping. An improved multi-objective particle swarm optimization algorithm and its application[J]. Control and Decision, 2012, 27(9):1313-1319. [38] 高飞. 智能算法超级学习手册[M]. 北京:人民邮政出版社, 2014:224-225. GAO Fei. Intelligent algorithms super learning manual[M]. Beijing:Posts and Telecom Press, 2014:224-225. [39] 孙晓星. 基于PSO算法的乙烯分离过程脱甲烷系统多目标优化[J]. 石油学报, 2016, 32(5):974-980. SUN Xiaoxing. Multi-objective optimization of the demethanization system based on PSO algorithm[J]. Acta Petrolei Sinica, 2016, 32(5):974-980. |