化工进展 ›› 2019, Vol. 38 ›› Issue (12): 5539-5547.DOI: 10.16085/j.issn.1000-6613.2019-0380
收稿日期:
2019-03-13
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
杨林军
作者简介:
李津津(1993—),女,博士研究生,研究方向为有机污染物控制。E-mail:基金资助:
Jinjin LI1(),Feiran CHEN2,Xiuwei MA1,Zhi ZHANG1,Linjun YANG1()
Received:
2019-03-13
Online:
2019-12-05
Published:
2019-12-05
Contact:
Linjun YANG
摘要:
有机污染物排放是导致大气复合型污染、诱发雾霾、产生光化学烟雾的重要诱因,是当前研究的热点问题。燃煤是有机污染物的来源之一。本文综述了燃煤有机污染物的排放特性,包括燃煤有机物的排放浓度及主要组分,影响燃煤有机物生成的因素,指出燃煤有机污染物浓度较低,苯系物是其重要组成之一。分析了烟气系统中有机物的迁移转化以及烟气处理设施(选择性催化还原脱硝、湿法脱硫、电除尘、湿式电除尘、低低温电除尘)的协同去除作用。最后基于吸附技术和催化技术的研究现状,展望了未来燃煤有机污染物控制的研究方向为:结合现有设备的协同去除作用,优化工艺条件,开发适合燃煤有机物的高效吸附剂和催化剂,开发集高效吸附/氧化/烟气协同净化技术于一体的燃煤有机物高效控制技术。
中图分类号:
李津津,陈扉然,马修卫,张智,杨林军. 燃煤有机污染物排放及其控制技术研究展望[J]. 化工进展, 2019, 38(12): 5539-5547.
Jinjin LI,Feiran CHEN,Xiuwei MA,Zhi ZHANG,Linjun YANG. Emission of coal-fired VOCs and prospect of control technology[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5539-5547.
1 | ZENG Y, CAO Y, QIAO X, et al. Air pollution reduction in China: recent success but great challenge for the future[J]. Science of the Total Environment, 2019, 663: 329-337. |
2 | FERNANDEZ-MARTINEZ G, LOPEZ-MAHIA P, MUNIATEGUI-LORENZO S, et al. Distribution of volatile organic compounds during the combustion process in coal-fired power stations[J]. Atmospheric Environment, 2001, 35(33): 5823-5831. |
3 | YAN Y, PENG L, LI R, et al. Concentration, ozone formation potential and source analysis of volatile organic compounds (VOCs) in a thermal power station centralized area: a study in Shuozhou, China[J]. Environmental Pollution, 2017, 223: 295-304. |
4 | WANG M, SHAO M, LU S, et al. Evidence of coal combustion contribution to ambient VOCs during winter in Beijing[J]. Chinese Chemical Letters, 2013, 24(9): 829-832. |
5 | 谢绍东,于淼,姜明. 有机气溶胶的来源与形成研究现状[J]. 环境科学学报, 2006, 26(12): 1933-1939. |
XIE Shaodong, YU Miao, JIANG Ming. Research progress in source and formation of organic aerosol[J]. Journal of Environmental Sciences, 2006, 26(12): 1933-1939. | |
6 | PUDASAINEE D, KIM J, LEE S, et al. Hazardous air pollutants emission from coal and oil-fired power plants[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2): 299-303. |
7 | CHENG J, ZHANG Y, WANG T, et al. Emission of volatile organic compounds (VOCs) during coal combustion at different heating rates[J]. Fuel, 2018, 225: 554-562. |
8 | BARABAD M, JUNG W, VERSOZA M, et al. Emission characteristics of particulate matter, volatile organic compounds, and trace elements from the combustion of coals in mongolia[J]. International Journal of Environmental Research and Public Health, 2018, 15(8): 1706. |
9 | GARCIA J P, BEYNEMASCLET S, MOUVIER G, et al. Emissions of volatile organic-compounds by coal-fired power-stations[J]. Atmospheric Environment Part A: General Topics, 1992, 26(9): 1589-1597. |
10 | MOREIRA DOS SANTOS C Y, DE ALMEIDA AZEVEDO D, DE AQUINO NETO F R. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station[J]. Atmospheric Environment, 2004, 38(9): 1247-1257. |
11 | YAN Y, YANG C, PENG L, et al. Emission characteristics of volatile organic compounds from coal-, coal gangue-, and biomass-fired power plants in China[J]. Atmospheric Environment, 2016, 143: 261-269. |
12 | SHI J, DENG H, BAI Z, et al. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China[J]. Science of the Total Environment, 2015, 515/516: 101-108. |
13 | TSAI J, LIN K, CHEN C, et al. Volatile organic compound constituents from an integrated iron and steel facility[J]. Journal of Hazardous Materials, 2008, 157(2/3): 569-578. |
14 | FENG Y, XIONG B, MU C, et al. Emissions of volatile organic compounds and carbonyl compounds from residential coal combustion in China[J]. Journal of Shanghai University (English Edition), 2010, 14(2): 79-82. |
15 | 晏蓉, 康忠汉. 煤燃烧排放有机污染物的试验研究[J]. 华中理工大学学报, 1996(1): 4-7. |
YAN Rong, KANG Zhonghan. An experimental study on the organic pollutants discharged from coal combustion[J]. Journal of Huazhong University of Science and Technology, 1996(1): 4-7. | |
16 | 李晓东, 傅钢, 尤孝方, 等. 不同煤种燃烧生成多环芳烃的研究[J]. 热能动力工程, 2003, 18(2): 125-127. |
LI Xiaodong, FU Gang, YOU Xiaofang, et al. Study on the generation of polycyclic aromatic hydrocarbons by different coals cmbustion[J]. Journal of Engineering for Thermal Energy and Power, 2003, 18(2): 125-127. | |
17 | 刘惠永, 张爱云. 燃煤电厂飞灰吸附非多环芳烃类有机污染物的检出及意义[J]. 环境工程, 2000, 18(2): 56-57. |
LIU Huiyong, ZHANG Aiyun. Detection of non-PAHs organic pollutants by fly ash adsorption of coal fired power station and its significance[J]. Environmental Engineering, 2000, 18(2): 56-57. | |
18 | 尹雪峰, 李晓东, 陆胜勇, 等. 大型电站燃煤锅炉多环芳烃排放特性[J]. 中国电机工程学报, 2007, 27(5): 1-6. |
YIN Xuefeng, LI Xiaodong, LU Shengyong, al at. The polycyclic aromatic hydrocarbons emission character in the large-scale power plant boiler[J]. Proceedings of the CSEE, 2007, 27(5): 1-6. | |
19 | 范志威. 煤燃烧过程中有机污染物的赋存及排放特性的研究[D]. 杭州: 浙江大学, 2005. |
FAN Zhiwei. Study on forms and emission characteristics of organic pollutions during coal combustion [D]. Hangzhou: Zhejiang University, 2005. | |
20 | WANG Q, HUNG P C, LU S, et al. Catalytic decomposition of gaseous PCDD/Fs over V2O5/TiO2-CNTs catalyst: effect of NO and NH3 addition[J]. Chemosphere, 2016, 159: 132-137. |
21 | GALLASTEGI-VILLA M, ARANZABAL A, BOUKHA Z, et al. Role of surface vanadium oxide coverage support on titania for the simultaneous removal of o-dichlorobenzene and NOx from waste incinerator flue gas[J]. Catalysis Today, 2015, 254: 2-11. |
22 | LIU X, WANG J, WANG X, et al. Simultaneous removal of PCDD/Fs and NOx from the flue gas of a municipal solid waste incinerator with a pilot plant[J]. Chemosphere, 2015, 133: 90-96. |
23 | FINOCCHIO E, BUSCA G, NOTARO M. A review of catalytic processes for the destruction of PCDD and PCDF from waste gases[J]. Applied Catalysis B: Environmental, 2006, 62(1/2): 12-20. |
24 | WEBER R, SAKURAI T, HAGENMAIER H. Low temperature decomposition of PCDD/PCDF, chlorobenzenes and PAHs by TiO2-based V2O5-WO3 catalysts[J]. Applied Catalysis B: Environmental, 1999, 20(4): 249-256. |
25 | YU M, LI X, REN Y, et al. Low temperature oxidation of PCDD/Fs by TiO2-based V2O5/WO3 catalyst[J]. Environmental Progress & Sustainable Energy, 2016, 35(5): 1265-1273. |
26 | LAZAR L, KOESER H, BALASANIAN I, et al. Catalytic destruction of aromatic VOCs on SCR-DeNOx commercial catalyst[J]. Environmental Engineering and Management Journal, 2007, 6(1): 13-20. |
27 | MIYATA H, MUKAI T, ONO T, et al. Fourier-transform infrared investigation of intermediates in the oxidation of toluene on V2O5/TiO2[J]. Journal of the Chemical Society Faraday Transactions Physical Chemistry in Condensed Phases, 1988, 84(7): 2465-2475. |
28 | JUNG K Y, JUNG Y R, JEON J K, et al. Catalytic conversion of 1,2-dichlorobenzene over mesoporous V2O5/TiO2 prepared from spray pyrolysis[J]. Journal of Nanoscience & Nanotechnology, 2011, 11(2): 1710. |
29 | JI L, CAO X, LU S, et al. Catalytic oxidation of PCDD/F on a V2O5-WO3/TiO2 catalyst: effect of chlorinated benzenes and chlorinated phenols[J]. Journal of Hazardous Materials, 2018, 342: 220-230. |
30 | FINOCCHIO E, BALDI M, BUSCA G, et al. A study of the abatement of VOC over V2O5-WO3-TiO2 and alternative SCR catalysts[J]. Catalysis Today, 2000, 59(3/4): 261-268. |
31 | 陈进生, 袁东星, 洪有为, 等. 烟气催化脱硝装置对多环芳烃排放特性的影响[J]. 燃料化学学报, 2007, 35(6): 722-726. |
CHEN Jinsheng, YUAN Dongxing, HONG Youwei, et al. Effect of catalytic de-NOx device on the emission characteristics of polycyclic aromatic hydrocarbon in flue gas[J]. Journal of Fuel Chemistry and Technology, 2007, 35(6): 722-726. | |
32 | HSU W T, LIU M C, HUNG P C, et al. PAH emissions from coal combustion and waste incineration[J]. Journal of Hazardous Materials, 2016, 318: 32-40. |
33 | LEE C W, ZHAO Y, LU S, et al. Catalytic destruction of a surrogate organic hazardous air pollutant as a potential co-benefit for coal-fired selective catalytic reduction systems[J]. Energy & Fuels, 2016, 30(3):2240-2247. |
34 | WANG R, LIU G, ZHANG J. Variations of emission characterization of PAHs emitted from different utility boilers of coal-fired power plants and risk assessment related to atmospheric PAHs[J]. Science of the Total Environment, 2015, 538: 180-190. |
35 | LI J, LI X, LI M, et al. Influence of air pollution control devices on the polycyclic aromatic hydrocarbon distribution in flue gas from an ultralow-emission coal-fired power plant[J]. Energy & Fuels, 2016, 30(11): 9572-9579. |
36 | 祁明峰. 煤燃烧过程中多环芳烃生成机理和控制实验研究[D]. 杭州: 浙江大学, 2003. |
QI Mingfeng. Studies on formation mechanism and control of polycyclic aromatic hydrocarbon from coal combustion [D]. Hangzhou: Zhejiang University, 2003. | |
37 | LI H, WANG L, CHEN C, et al. Influence of memory effect caused by aged bag filters on the stack PCDD/F emissions[J]. Journal of Hazardous Materials, 2011, 185(2/3): 1148-1155. |
38 | LI X D, LI J W, WU D L, et al. Removal effect of the low-low temperature electrostatic precipitator on polycyclic aromatic hydrocarbons[J]. Chemosphere, 2018, 211: 44-49. |
39 | 严建华, 曹志勇, 祁明峰, 等. 电除尘器对多环芳烃排放的影响[J]. 热力发电, 2004, 33(4): 14-16. |
YAN Jianhua, CAO Zhiyong, QI Mingfeng, et al. Influence of electric precipitator upon PAHs emission[J]. Thermal Power Generation, 2004, 33(4): 14-16. | |
40 | 刘惠永, 孙志宽, 孙俊民, 等. 燃煤排放正构烷烃类有机化合物的特征与形成演化机理研究[J]. 热能动力工程, 2003, 18(1): 35-38. |
LIU Huiyong, SUN Zhikuan, SUN Junmin, et al. An investigation on the characteristics of the discharge of normal paraffin organic compounds during a coal-burning process and their related formation evolution mechanism[J]. Journal of Engineering for Thermal Energy and Power, 2003, 18(1): 35-38. | |
41 | 周远翔, 孙昌富, 严萍, 等. 快脉冲放电对粉尘中二英的转化作用[J]. 清华大学学报(自然科学版), 2002, 42(9): 1161-1164. |
ZHOU Yuanxiang, SUN Changfu, YAN Ping, et al. Pulse discharge effect on detoxication of dioxin in fly ash[J]. Journal of Tsinghua University (Science and Technology), 2002, 42(9): 1161-1164. | |
42 | HUNG P C, CHANG S H, CHANG M B. Removal of chlorinated aromatic organic compounds from MWI with catalytic filtration[J]. Aerosol and Air Quality Research, 2014, 14(4): 1215-1222. |
43 | HSU W T, HUNG P C, CHANG M B. Catalytic destruction vs. adsorption in controlling dioxin emission[J]. Waste Management, 2015, 46: 257-264. |
44 | WANG G, DOU B J, ZHANG Z S, et al. Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon[J]. Journal of Environmental Sciences, 2015, 30(4): 65-73. |
45 | MOHAMMADI A, MOGHADDAS J. Synthesis, adsorption and regeneration of nanoporous silica aerogel and silica aerogel-activated carbon composites[J]. Chemical Engineering Research & Design, 2015, 94: 475-484. |
46 | RAMOS M E, BONELLI P R, CUKIERMAN A L, et al. Adsorption of volatile organic compounds onto activated carbon cloths derived from a novel regenerated cellulosic precursor[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 175-182. |
47 | QI J W, LI J S, LI Y, et al. Synthesis of porous carbon beads with controllable pore structure for volatile organic compounds removal[J]. Chemical Engineering Journal, 2017, 307: 989-998. |
48 | VELLINGIRI K, KUMAR P, KIM K H. Coordination polymers: Challenges and future scenarios for capture and degradation of volatile organic compounds[J]. Nano Research, 2016, 9(11): 3181-3208. |
49 | YU L, WANG L, XU W C, et al. Adsorption of VOCs on reduced graphene oxide[J]. Journal of Environmental Sciences, 2018, 67(5): 171-178. |
50 | CHI K H, CHANG M B. Evaluation of PCDD/F congener partition in vapor/solid phases of waste incinerator flue gases[J]. Environmental Science & Technology, 2005, 39(20): 8023-8031. |
51 | LIU X, YE M, WANG X, et al. Gas-phase and particle-phase PCDD/F congener distributions in the flue gas from an iron ore sintering plant[J]. Journal of Environmental Sciences, 2017, 54(4): 239-245. |
52 | 刘子红. 改性活性炭纤维协同脱除燃煤烟气中多种污染物的实验及放大研究[D]. 武汉: 华中科技大学, 2014. |
LIU Zihong. Joint removal research and scale-up experiment of multiple pollutants in coal fired flues gas based on modified activated carbon fiber [D]. Wuhan: Huazhong University of Science and Technology, 2014. | |
53 | KAMAL M S, RAZZAK S A, HOSSAIN M M. Catalytic oxidation of volatile organic compounds (VOCs) —A review[J]. Atmospheric Environment, 2016, 140: 117-134. |
54 | ORDONEZ S, BELLO L, SASTRE H, et al. Kinetics of the deep oxidation of benzene, toluene, n-hexane and their binary mixtures over a platinum on gamma-alumina catalyst[J]. Applied Catalysis B: Environmental, 2002, 38(2): 139-149. |
55 | CHEN Z, MAO J, ZHOU R. Preparation of size-controlled Pt supported on Al2O3 nanocatalysts for deep catalytic oxidation of benzene at lower temperature[J]. Applied Surface Science, 2019, 465: 15-22. |
56 | LI J Q, FENG Y, MO S P, et al. Nanodendritic platinum supported on γ-alumina for complete benzene oxidation[J]. Particle & Particle Systems Characterization, 2016, 33(9): 620-627. |
57 | WANG J, LIU X L, ZENG J L, et al. Catalytic oxidation of trichloroethylene over TiO2 supported ruthenium catalysts[J]. Catalysis Communications, 2016, 76: 13-18. |
58 | LI S M, HAO Q L, ZHAO R Z, et al. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts[J]. Chemical Engineering Journal, 2016, 285: 536-543. |
59 | WANG H, YANG W, TIAN P H, et al. A highly active and anti-coking Pd-Pt/SiO2 catalyst for catalytic combustion of toluene at low temperature[J]. Applied Catalysis A: General, 2017, 529: 60-67. |
60 | ZHANG L, PENG Y X, ZHANG J, et al. Adsorptive and catalytic properties in the removal of volatile organic compounds over zeolite-based materials[J]. Chinese Journal of Catalysis, 2016, 37(6): 800-809. |
61 | ZHOU G L, HE X L, LIU S, et al. Phenyl VOCs catalytic combustion on supported CoMn/AC oxide catalyst[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 932-941. |
62 | LI G Q, ZHANG C H, WANG Z, et al. Fabrication of mesoporous Co3O4 oxides by acid treatment and their catalytic performances for toluene oxidation[J]. Applied Catalysis A: General, 2018, 550: 67-76. |
63 | CHEN J, CHEN X, CHEN X, et al. Homogeneous introduction of CeOyinto MnOx-based catalyst for oxidation of aromatic VOCs[J]. Applied Catalysis B: Environmental, 2018, 224: 825-835. |
64 | WANG C, ZHANG C H, HUA W C, et al. Catalytic oxidation of vinyl chloride emissions over Co-Ce composite oxide catalysts[J]. Chemical Engineering Journal, 2017, 315: 392-402. |
65 | ZHANG C H, WANG C, GIL S, et al. Catalytic oxidation of 1,2-dichloropropane over supported LaMnOx oxides catalysts[J]. Applied Catalysis B: Environmental, 2017, 201: 552-560. |
66 | LIANG X, QI F, LIU P, et al. Performance of Ti-pillared montmorillonite supported Fe catalysts for toluene oxidation: the effect of Fe on catalytic activity[J]. Applied Clay Science, 2016, 132: 96-104. |
67 | YANG P, ZUO S F, SHI Z N, et al. Elimination of 1,2-dichloroethane over (Ce,Cr)xO2/MOy catalysts (M =Ti, V, Nb, Mo, W and La)[J]. Applied Catalysis B: Environmental, 2016, 191: 53-61. |
68 | 李淑君. Pt/CeO2催化剂催化氧化甲苯反应机制研究[D]. 广州: 华南理工大学, 2018. |
LI Shujun. Toluene oxidation mechanism over Pt/CeO2 catalysts[D]. Guangzhou: South China University of Technology, 2018. | |
69 | ABDELOUAHAB-REDDAM Z, MAIL R EL, COLOMA F, et al. Platinum supported on highly-dispersed ceria on activated carbon for the total oxidation of VOCs[J]. Applied Catalysis A: General, 2015, 494: 87-94. |
70 | LIU P, HE H P, WEI G L, et al. An efficient catalyst of manganese supported on diatomite for toluene oxidation: manganese species, catalytic performance, and structure activity relationship[J]. Microporous and Mesoporous Materials, 2017, 239: 101-110. |
71 | MENG Q, WANG W, WENG X, et al. Active oxygen species in Lan+1NinO3n+1 layered perovskites for catalytic oxidation of toluene and methane[J]. Journal of Physical Chemistry C, 2016, 120(6): 3259-3266. |
72 | LIAO Y, ZHANG X, PENG R S, et al. Catalytic properties of manganese oxide polyhedra with hollow and solid morphologies in toluene removal[J]. Applied Surface Science, 2017, 405: 20-28. |
73 | WANG Y, ARANDIYAN H, LIU Y, et al. Template-free scalable synthesis of flower-like Co3-xMnxO4 spinel catalysts for toluene oxidation[J]. ChemCatChem, 2018, 10(16): 3429-3434. |
74 | URBUTIS A, KITRYS S. Dual function adsorbent-catalyst CuO-CeO2/NaX for temperature swing oxidation of benzene, toluene and xylene[J]. Central European Journal of Chemistry, 2014, 12(4): 492-501. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[7] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[8] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[9] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[10] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[11] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[12] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[13] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[14] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[15] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |