1 |
DECOSTE J B , PETERSON G W . Metal-organic frameworks for air purification of toxic chemicals[J]. Chemical Reviews, 2014, 114(11): 5695-5727.
|
2 |
TU T N , NGUYEN M V , NGUYEN H L , et al . Designing bipyridine-functionalized zirconium metal-organic frameworks as a platform for clean energy and other emerging applications[J]. Coordination Chemistry Reviews, 2018, 364: 33-50.
|
3 |
HU J , LIU Y , LIU J , et al . Effects of incorporated oxygen and sulfur heteroatoms into ligands for CO2/N2 and CO2/CH4 separation in metal-organic frameworks: a molecular simulation study[J]. Fuel, 2018, 226: 591-597.
|
4 |
STASSEN I , BUEKEN B , REINSCH H , et al . Towards metal-organic framework based field effect chemical sensors: UiO-66-NH2 for nerve agent detection[J]. Chemical Science, 2016, 7(9): 5827-5832.
|
5 |
JI P , DRAKE T , MURAKARNI A , et al . Tuning lewis acidity of metal-organic frameworks via perfluorination of bridging ligands: spectroscopic, theoretical, and catalytic studies[J]. Journal of the American Chemical Society, 2018, 140(33): 10553-10561.
|
6 |
CAVKA J H , JAKOBSEN S , OLSBYE U , et al . A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851.
|
7 |
SCHAATE A , ROY P, GODT A , et al . Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals[J]. Chemistry: A European Journal, 2011, 17(24): 6643-6651.
|
8 |
REN J , LANGMI H W , NORTH B C , et al . Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications[J]. International Journal of Hydrogen Energy, 2014, 39(2): 890-895.
|
9 |
BARCIA P S , GUIMARAES D , MENDES P A P , et al . Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66[J]. Microporous and Mesoporous Materials, 2011, 139(1/2/3): 67-73.
|
10 |
KATZ M J , BROWN Z J , COLON Y J , et al . A facile synthesis of UiO-66, UiO-67 and their derivatives[J]. Chemical Communications, 2013, 49(82): 9449-9451.
|
11 |
HAN Y , LIU M , LI K , et al . Cu2O Mediated synthesis of metal organic framework UiO-66 in nanometer scale[J]. Crystal Growth & Design, 2017, 17(2): 685-692.
|
12 |
UZAREVIC K , WANG T C , MOON S Y , et al . Mechanochemical and solvent-free assembly of zirconium-based metal-organic frameworks[J]. Chemical Communications, 2016, 52(10): 2133-2136.
|
13 |
HUANG Y H , LO W S, KUO Y W, et al . Green and rapid synthesis of zirconium metalorganic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds[J]. Chemical Communications, 2017, 53(43): 5818-5821.
|
14 |
LI Y , LIU Y , GAO W , et al . Microwave-assisted synthesis of UiO-66 and its adsorption performance towards dyes[J]. CrystEngComm, 2014, 16(30): 7037-7042.
|
15 |
YANG L , CAI R , QI W , et al . Microwave synthesis and hydrogen storage performance of UiO-66[J]. Chinese Journal of Power Sources, 2016, 40(8): 1605-1608.
|
16 |
REN J , SEGAKWENG T , LANGMI H W , et al . Microwave-assisted modulated synthesis of zirconium-based metal-organic framework(Zr-MOF) for hydrogen storage applications[J]. International Journal of Materials Research, 2014, 105(5): 516-519.
|
17 |
TADDEI M , DAU P V, COHEN S M , et al . Efficient microwave assisted synthesis of metal-organic framework UiO-66: optimization and scale up[J]. Dalton Transactions, 2015, 44(31): 14019-14026.
|
18 |
RUBIO-MARTINEZ M , BATTEN M P , POLYZOS A , et al . Versatile, high quality and scalable continuous flow production of metal-organic frameworks[J]. Scientific Reports, 2014, 4: 5443.
|
19 |
GOEKPINAR S , DIMENT T , JANIAK C . Environmentally benign dry-gel conversions of Zr-based UiO metal-organic frameworks with high yield and the possibility of solvent re-use[J]. Dalton Transactions, 2017, 46(30): 9895-9900.
|
20 |
TANNERT N , GOKPINAR S , HASTURK E , et al . Microwave-assisted dry-gel conversion—a new sustainable route for the rapid synthesis of metal-organic frameworks with solvent re-use[J]. Dalton Transactions, 2018, 47(29): 9850-9860.
|
21 |
LU N , ZHOU F , JIA H , et al . Dry-gel conversion synthesis of Zr-based metal-organic frameworks[J]. Industrial & Engineering Chemistry Research, 2017, 56(48): 14155-14163.
|
22 |
YE G , ZHANG D , LI XF , et al . Boosting catalytic performance of metal-organic framework by increasing the defects via a facile and green approach[J]. ACS Applied Materials & Interfaces, 2017, 9(40): 34937-34943.
|
23 |
MARSHALL R J , HOBDAY C L , MURPHIE C F , et al . Amino acids as highly efficient modulators for single crystals of zirconium and hafnium metal-organic frameworks[J]. Journal of Materials Chemistry A, 2016, 4(18): 6955-6963.
|
24 |
LIANG W , BABARAO R , D’ALESSANDRO D M . Microwave-assisted solvothermal synthesis and optical properties of tagged MIL-140A metal-organic frameworks[J]. Inorganic Chemistry, 2013, 52(22): 12878-12880.
|
25 |
LU C M , LIU J , XIAO K , et al . Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles[J]. Chemical Engineering Journal, 2010, 156(2): 465-470.
|
26 |
TADDEI M , CASATI N , STEITZ D A , et al . In situ high-resolution powder X-ray diffraction study of UiO-66 under synthesis conditions in a continuous-flow microwave reactor[J]. CrystEngComm, 2017, 19(23): 3206-3214.
|
27 |
TAI S , ZHANG W , ZHANG J , et al . Facile preparation of UiO-66 nanoparticles with tunable sizes in a continuous flow microreactor and its application in drug delivery[J]. Microporous and Mesoporous Materials, 2016, 220: 148-154.
|
28 |
EBRAHIM A M , LEVASSEUR B , BANDOSZ T J . Interactions of NO2 with Zr-Based MOF: effects of the size of organic linkers on NO2 adsorption at ambient conditions[J]. Langmuir, 2013, 29(1): 168-174.
|
29 |
EBRAHIM A M , BANDOSZ T J . Ce(Ⅲ) doped Zr-based MOFs as excellent NO2 adsorbents at ambient conditions[J]. ACS Applied Materials & Interfaces, 2013, 5(21): 10565-10573.
|
30 |
DECOSTE J B , DEMASKY T J , KATZ M J , et al . A UiO-66 analogue with uncoordinated carboxylic acids for the broad-spectrum removal of toxic chemicals[J]. New Journal of Chemistry, 2015, 39(4): 2396-2399.
|
31 |
PETERSON G W , MAHLE J J , DECOSTE J B , et al . Extraordinary NO2 removal by the metal-organic framework UiO-66-NH2 [J]. Angewandte Chemie: International Edition, 2016, 55(21): 6235-6238.
|
32 |
JASUJA H , PETERSON G W , DECOSTE J B , et al . Evaluation of MOFs for air purification and air quality control applications: ammonia removal from air[J]. Chemical Engineering Science, 2015, 124: 118-124.
|
33 |
KIM K C , YU D , SNURR R Q . Computational screening of functional groups for ammonia capture in metal-organic frameworks[J]. Langmuir, 2013, 29(5): 1446-1456.
|
34 |
KIM K C , MOGHADAM P Z , FAIREN-JIMENEZ D , et al . Computational screening of metal catecholates for ammonia capture in metal-organic frameworks[J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3257-3267.
|
35 |
JOSHI J N , GARCIA-GUTIERREZ E Y , MORAN C M , et al . Engineering copper carboxylate functionalities on water stable metal-organic frameworks for enhancement of ammonia removal capacities[J]. Journal of Physical Chemistry C, 2017, 121(6): 3310-3319.
|
36 |
PETERSON G W , DECOSTE J B , FATOLLAHI-FARD F , et al . Engineering UiO-66-NH2 for toxic gas removal[J]. Industrial & Engineering Chemistry Research, 2014, 53(2): 701-707.
|
37 |
DECOSTE J B , BROWE M A , WAGNER G W , et al . Removal of chlorine gas by an amine functionalized metal-organic framework via electrophilic aromatic substitution[J]. Chemical Communications, 2015, 51(62): 12474-12477.
|
38 |
BROWE M A , NAPOLITANO A , DECOSTE J B , et al . Filtration of chlorine and hydrogen chloride gas by engineered UiO-66-NH2 metal-organic framework[J]. Journal of Hazardous Materials, 2017, 332: 162-167.
|
39 |
LU A X , PLOSKONKA A M , TOVAR T M , et al . Direct surface growth of UiO-66-NH2 on polyacrylonitrile nanofibers for efficient toxic chemical removal[J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14502-14506.
|
40 |
KATZ M J , MONDLOCH J E , TOTTEN R K , et al . Simple and compelling biomimetic metal-organic framework catalyst for the degradation of nerve agent simulants[J]. Angewandte Chemie:International Edition, 2014, 53(2): 497-501.
|
41 |
KATZ M J , MOON S Y , MONDLOCH J E , et al . Exploiting parameter space in MOFs: a 20-fold enhancement of phosphate-ester hydrolysis with UiO-66-NH2 [J]. Chemical Science, 2015, 6(4): 2286-2291.
|
42 |
DE KONING M C , GROL M VAN , BREIJAERT T . Degradation of paraoxon and the chemical warfare agents VX, tabun, and soman by the metal-organic frameworks UiO-66-NH2, MOF-808, NU-1000, and PCN-777[J]. Inorganic Chemistry, 2017, 56(19): 11804-11809.
|
43 |
LOPEZ-MAYA E , MONTORO C , MARLENY R-A L , et al . Textile/metal organic framework composites as self-detoxifying filters for chemical warfare agents[J]. Angewandte Chemie:International Edition, 2015, 54(23): 6790-6794.
|
44 |
GIL-SAN-MILLAN R , LOPEZ-MAYA E , HALL M , et al . Chemical warfare agents detoxification properties of zirconium metal-organic frameworks by synergistic incorporation of nucleophilic and basic sites[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 23967-23973.
|
45 |
周川, 杨小兵, 颜晓珊, 等 . 空气过滤用复合纳米纤维材料研究进展[J]. 功能材料, 2018, 49(5): 5056-5060.
|
|
ZHOU C , YANG X B , YAN X S , et al . Progress on the composite nanofiber materials used for air filtration[J]. Journal of Functional Materials, 2018, 49(5): 5056-5060.
|
46 |
MCCARTHY D L , LIU J , DWYER D B , et al . Electrospun metal-organic framework polymer composites for the catalytic degradation of methyl paraoxon[J]. New Journal of Chemistry, 2017, 41(17): 8748-8753.
|
47 |
LU A X , MCENTEE M , BROWE M A , et al . MOFabric: electrospun nanofiber mats from PVDF/UiO-66-NH2 for chemical protection and decontamination[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13632-13636.
|
48 |
PETERSON G W , LU A X , EPPS T H , et al . Tuning the morphology and activity of electrospun polystyrene/UiO-66-NH2 metal-organic framework composites to enhance chemical warfare agent removal[J]. ACS Applied Materials & Interfaces, 2017, 9(37): 32248-32254.
|
49 |
ZHAO J J , LOSEGO M D , LEMAIRE P C , et al . Highly adsorptive, MOF-functionalized nonwoven fiber mats for hazardous gas capture enabled by atomic layer deposition[J]. Advanced Materials Interfaces, 2014, 1(4): 1400040.
|
50 |
WAGNER G W , CHEN Q , WU Y . Reactions of VX, GD, and HD with nanotubular titania[J]. The Journal of Physical Chemistry C, 2008, 112(31): 11901-11906.
|
51 |
WAGNER G W , PETERSON G W , MAHLE J J . Effect of adsorbed water and surface hydroxyls on the hydrolysis of VX, GD, and HD on titania materials: the development of self-decontaminating paints[J]. Industrial & Engineering Chemistry Research, 2012, 51(9): 3598-3603.
|
52 |
ZHAO J , LEE D T, YAGA R W , et al . Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs[J]. Angewandte Chemie: International Edition, 2016, 55(42): 13224-13228.
|