化工进展 ›› 2019, Vol. 38 ›› Issue (08): 3612-3620.DOI: 10.16085/j.issn.1000-6613.2018-2262
李原1,2(),狄勤丰1,2(),华帅1,2,张景楠1,2,叶峰1,2,王文昌1,2
收稿日期:
2018-11-19
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
狄勤丰
作者简介:
李原(1991—),男,博士研究生,研究方向为工程力学。E-mail:基金资助:
Yuan LI1,2(),Qinfeng DI1,2(),Shuai HUA1,2,Jingnan ZHANG1,2,Feng YE1,2,Wenchang WANG1,2
Received:
2018-11-19
Online:
2019-08-05
Published:
2019-08-05
Contact:
Qinfeng DI
摘要:
储层岩石的润湿性对于石油采收率至关重要,近年来纳米流体润湿反转技术在提高石油采收率方面的应用得到了广泛关注,并取得了一系列成果。本文首先介绍了利用纳米流体对储层润湿性反转在提高石油采收率方面的应用,包括提高水驱效率和降压增注,其次归纳了润湿性变化的实验评价方法并分析影响纳米流体润湿反转效果的因素,表明纳米材料性质(类型、尺寸、浓度)和地层环境(温度、矿化度)均有不同程度的影响。然后阐述了纳米流体改变储层润湿性的机制,认为其包含纳米流体润湿铺展和纳米颗粒岩石壁面吸附的双重机制。最后指出运用此技术存在的问题和难点,并对以后的研究方向进行了展望。
中图分类号:
李原,狄勤丰,华帅,张景楠,叶峰,王文昌. 纳米流体对储层润湿性反转提高石油采收率研究进展[J]. 化工进展, 2019, 38(08): 3612-3620.
Yuan LI,Qinfeng DI,Shuai HUA,Jingnan ZHANG,Feng YE,Wenchang WANG. Research progress of reservoirs wettability alteration by using nanofluids for enhancing oil recovery[J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3612-3620.
1 | KASAEIANA, ESHGHIA T, SAMETIM. A review on the applications of nanofluids in solar energy systems[J]. International Journal of Heat & Mass Transfer, 2015, 43(2): 584-598. |
2 | KHAIRULM A, SHAHK, DOROODCHIE, et al. Effects of surfactant on stability and thermo-physical properties of metal oxide nanofluids[J]. International Journal of Heat & Mass Transfer, 2016, 98: 778-787. |
3 | 王芳辉, 朱红, 邹静. 纳米材料在石油行业中的应用[J]. 西安石油大学学报(自然科学版), 2006, 21(6): 87-91. |
WANGH F, ZHUH, ZOUJ. Applications of nanotechnology in petroleum industry[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2006, 21(6): 87-91. | |
4 | AFEEZO G, RADZUANJ, MUHAMMADA M, alet, Recent advances and prospects in polymeric nanofluids application for enhanced oil recovery[J]. Journal of Industrial and Engineering Chemistry, 2018, 66: 1-19. |
5 | EHTESABIH, AHADIANM M, TAGHIKHANIV, et al. Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids[J]. Energy & Fuels, 2013, 28(1): 423-430. |
6 | ZARGARTALEBIM, KHARRATR, BARATIN. Enhancement of surfactant flooding performance by the use of silica nanoparticles[J]. Fuel, 2015, 143: 21-27. |
7 | CHENX Y, XIEX T, LIY, CHENS J. Investigation of the synergistic effect of alumina nanofluids and surfactant on oil recovery-Interfacial tension, emulsion stability and viscosity reduction of heavy oil[J]. Petroleum Science and Technology, 2018, 36(15): 1131-1136. |
8 | HOROZOVT S. Foams and foam films stabilised by solid particles[J]. Current Opinion in Colloid & Interface Science, 2008, 13(3): 134-140. |
9 | 杨兆中, 朱静怡, 李小刚, 等. 纳米颗粒稳定泡沫在油气开采中的研究进展[J]. 化工进展, 2017, 36(5): 1675-1681. |
YANGZhaozhong, ZHUJingyi, LIXiaogang, et al. Research progress of nanoparticle stabilized foam in oil and gas exploration[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1675-1681. | |
10 | TABORDAE A,FRANCOC A,LOPERAS H,et al. Effect of nanoparticles / nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions[J]. Fuel, 2016, 184: 222-232. |
11 | SULEIMANOVB A, ISMAILOVF S, VELIYEVE F. Nanofluid for enhanced oil recovery[J]. Journal of Petroleum Science & Engineering, 2011, 2(4): 431-437. |
12 | MOHAMMEDM, BABADAGLIT. Wettability alteration: a comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems[J]. Advances in Colloid and Interface Science, 2015, 220: 54-77. |
13 | 廖思磊. 纳米材料在油田降压增注的应用研究进展[J]. 辽宁化工, 2018, 47(9): 957-959. |
LIAOSilei. Research progress in application of nanomaterials in decompression and augmented injection of oilfields[J]. Liaoning Chemical Industry , 2018, 47(9): 957-959. | |
14 | ROUSTAEIA , SAFFARZADEHS , MOHAMMADIM . An evaluation of modified silica nanoparticles efficiency in enhancing oil recovery of light intermediate oil reservoirs[J]. Egyptian Journal of Petroleum, 2013, 22(3): 427-433. |
15 | 蒋平, 张贵才, 葛际江, 等. 润湿反转机理的研究进展[J]. 西安石油大学学报(自然科学版), 2007, 22(6): 78-84. |
JIANGPing, ZHANGGuicai, GEJijiang, et al. Research progress of wetting reversal mechanism[J]. Journal of Xi'an Shiyou University(Natural Science Edition), 2007, 22(6): 78-84. | |
16 | 付美龙, 周玉霞. 润湿性的改变对提高原油采收率的影响研究[J]. 石油天然气学报, 2012, 34(12):128-132. |
FUMeilong, ZHOUYuxia. Study on the effect of change of wettability on enhancing oil recovery[J]. Journal of Oil and Gas Technology, 2012, 34(12): 128-132. | |
17 | 侯宝峰, 王业飞, 齐自远. 表面活性剂改变岩心表面润湿性的基础研究进展[J]. 油田化学, 2015, 32(3): 468-474. |
HOUBaofeng, WANGYefei, QIZiyuan. Basic research progress of surfactants changing the wettability of core surface[J]. Oilfield Chemistry, 2015, 32(3): 468-474. | |
18 | 林梅钦, 华朝, 李明远. 利用盐水调节油藏岩石表面润湿性[J]. 石油勘探与开发, 2018(1):136-144. |
LINMeiqin, HUAChao, LIMingyuan. Using salt water to adjust the surface wettability of reservoir rock[J]. Petroleum Exploration and Development, 2018(1): 136-144. | |
19 | 李俊刚. 改变岩石润湿性提高原油采收率机理研究[D]. 大庆: 大庆石油学院, 2006. |
LIJungang. Study on the mechanism of changing the wettability of rock to improve oil recovery [D]. Daqing: Daqing Petroleum Institute, 2006. | |
20 | ABHISHEKR , KUMARG S , SAPRUR K. Wettability alteration in carbonate reservoirs using nanofluids[J]. Petroleum Science and Technology, 2015, 33(7): 794-801. |
21 | LIQ , WEIB , LUL , et al. Investigation of physical properties and displacement mechanisms of surface-grafted nano-cellulose fluids for enhanced oil recovery[J]. Fuel, 2017, 207: 352-364. |
22 | ROUSTAEIA , BAGHERZADEHH . Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs[J]. Journal of Petroleum Exploration and Production Technology, 2015, 5(1): 27-33. |
23 | 冯岸洲, 张建强, 蒋平, 等. 低渗透油藏高浓度表面活性剂体系降压增注试验研究[J]. 油田化学, 2011, 28(1): 69-73. |
FENGAnzhou, ZHANGJianqiang, JIANGPing, et al. Experimental study on high pressure surfactant system for low-permeability reservoirs[J]. Oilfield Chemistry, 2011, 28(1): 69-73. | |
24 | 王新亮. 石油储层微通道纳米颗粒吸附法双重减阻机制研究[D]. 上海: 上海大学, 2013. |
WANGXinliang. Study on double drag reduction mechanism of microchannel nanoparticle adsorption in petroleum reservoirs[D]. Shanghai: Shanghai University, 2013. | |
25 | 狄勤丰, 沈琛, 王掌洪, 等. 纳米吸附法降低岩石微孔道水流阻力的实验研究[J]. 石油学报, 2009, 30(1): 125-128. |
DIQinfeng, SHENWei, WANGZhanghong, et al. Experimental study on reducing water flow resistance of rock microchannel by nano-adsorption method[J]. Acta Petrolei Sinica, 2009, 30(1): 125-128. | |
26 | ALVAREZJ O , SCHECHTERD S. 非常规油气开发中润湿性反转技术的应用[J]. 石油勘探与开发, 2016, 43(5):764-771. |
ALVAREZJ O ,SCHECHTERD S. Application of wettability alteration in the exploitation of unconventional liquid resources[J]. Petroleum Exploration and Development, 2016, 43(5): 764-771. | |
27 | DAHKAEEK P, SADEGHIM T, FAKHROUEIANZ, et al. Effect of NiO/SiO2 nanofluids on the ultra interfacial tension reduction between heavy oil and aqueous solution and their use for wettability alteration of carbonate rocks[J]. Journal of Petroleum Science and Engineering, 2019, 176: 11-26. |
28 | ALANSSARIS , BARIFCANIA , WANGS , et al. Wettability alteration of oil-wet carbonate by silica nanofluid[J]. Journal of Colloid & Interface Science, 2016, 461:435. |
29 | EHTESABIH , AHADIANM M , TAGHIKHANIV , et al. Enhanced heavy oil recovery in sandstone cores using TiO2 nanofluids[J]. Energy & Fuels, 2014, 28(1):423-430. |
30 | KARIMIA , FAKHROUEIANZ , BAHRAMIANA , et al. Wettability alteration in carbonates using zirconium oxide nanofluids: EOR Implications[J]. Energy & Fuels, 2012, 26(2): 1028-1036. |
31 | CHENH J, DIQ F, YEF, et,al. Numerical simulation of drag reduction effects by hydrophobic nanoparticles adsorption method in water flooding processes[J]. Journal of Natural Gas Science & Engineering,2016, 35: 1261-1269. |
32 | GIRALDOJ, BENJUMEA P LOPERAS, et al. Wettability alteration of sandstone cores by alumina-based nanofluids[J]. Energy & Fuels, 2013, 27(7): 3659-3665. |
33 | NWIDEEL N, LEBEDEVM, BARIFCANIA, et al. Wettability alteration of oil-wet limestone using surfactant-nanoparticle formulation[J]. Journal of Colloid & Interface Science, 2017, 504: 334-345. |
34 | YANY L, CUIM Y, JIANGW D, et al. Drag reduction in reservoir rock surface: hydrophobic modification by SiO2 nanofluids[J]. Applied Surface Science, 2017, 396: 1556-1561. |
35 | SEDAGHATM H , MOHAMMADIH , RAZMIR . Application of SiO2 and TiO2 nano particles to enhance the efficiency of polymer-surfactant floods[J]. Energy Sources, 2016, 38(1):22-28. |
36 | MOSLANM S , SULAIMANW R W , ISMAILA R , et al. Wettability alteration of dolomite rock using nanofluids for enhanced oil recovery[J]. Materials Science Forum, 2016, 864: 194-198. |
37 | BAYATA E, JUNINR, SAMSURIA,et al. Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures[J]. Energy & Fuels, 2015, 28(28): 6255-6266. |
38 | GIRALDOJ, BENJUMEAP, LOPERAS, ET AL. Wettability alteration of sandstone cores by alumina-based nanofluids[J]. Energy & Fuels, 2013, 27(7): 3659-3665 |
39 | KHAZAEIM, HOSSEINIM S. Synthesis hydrophilic hybrid nanoparticles and its application in wettability alteration of oil-wet carbonate rock reservoir[J]. Petroleum Science & Technology, 2017, 35(24):2269-2276. |
40 | 狄勤丰, 顾春元, 施利毅, 等. 疏水性纳米SiO2增注剂的降压作用机理[J]. 钻采工艺, 2007, 30(4): 91-94. |
DIQ F, GUC Y, SHIL Y, et al. Pressure drop mechanism of enhancing water injection technology with hydrophobicity nanometer SiO2[J]. Drilling&Production Technology, 2007, 30(4): 91-94. | |
41 | 刘培松, 陶晓贺, 李小红, 等. 水基纳米聚硅在低渗油藏中的降压增注研究[J]. 油田化学, 2017(4): 604-609. |
LIUPeisong, TAOXiaohe, LIXiaohong, et al. Study on the depressurization and increase of water-based nanopolysilicon in low permeability reservoirs[J]. Oilfield Chemistry, 2017(4): 604-609. | |
42 | HENDRANINGRATL, TORSATERO. Effects of the initial rock wettability on silica-based nanofluid-enhanced oil recovery processes at reservoir temperatures[J]. Energy & Fuels, 2014, 28(10): 6228-6241. |
43 | ALANSSARIS,WANGS,BARIFCANIA,et al. Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite[J]. Fuel, 2017, 206: 34-42. |
44 | 熊建华, 李庆彤, 陶剑清, 等. 注水井纳米降压增注工艺的应用与认识[J]. 石油钻采工艺, 2010, 32(4): 78-80. |
XIONGJ H,LIQ T,TAOJ Q, et al. Nano-injection technology application and understanding in injection wells[J]. Oil Drilling&Production Technology, 2010, 32(4): 78-80. | |
45 | YOUSEFK , SANAZS , MASOUDR , et al. Review on application of nanoparticles for EOR purposes: a critical of the opportunities and challenges[J]. Chinese Journal of Chemical Engineering, 2018, 27(2): 237-246. |
46 | SADATSHOJAEIE, JAMIALAHMADIM. ESMAEILZADEH F,et al. Effects of low-salinity water coupled with silica nanoparticles on wettability alteration of dolomite at reservoir temperature[J]. Petroleum Science and Technology, 2016, 34(15): 1345-1351. |
47 | SULAIMANW R W , ADALAA J , JUNINR , et al. Effects of salinity on nanosilica applications in altering limestone rock wettability for enhanced oil recovery[J]. Advanced Materials Research, 2015, 1125: 200-204. |
48 | ZHANGH, NIKOLOVA, WASAND. Enhanced oil recovery (EOR) using nanoparticle dispersions: underlying mechanism and imbibition experiments[J]. Energy & Fuels, 2014, 28(5): 3002-3009. |
49 | CHENGARA, NIKOLOVA, WASAND, et al. Spreading of nanofluids driven by the structural disjoining pressure gradient[J]. Journal of Colloid & Interface Science, 2004, 280(1): 192-201. |
50 | TROKHYMCHUKA, HENDERSOND, NIKOLOVA , et al. A simple calculation of structural and depletion forces for fluids/suspensions confined in a film[J]. Langmuir, 2001, 17(16): 4940-4947. |
51 | KONDIPARTYK, NIKOLOVA D, WASAND, et al. Dynamic spreading of nanofluids on solids. Part Ⅰ: Experimental[J]. Langmuir, 2012, 28(41): 14618-14623. |
52 | 李英琪. 纳米流体动态润湿行为主动调控的力学机理研究[D]. 合肥: 中国科学技术大学,2017. |
LIYingqi. Study on mechanical mechanism of active control of dynamic wetting behavior of nanofluids[D]. Hefei: University of Science and Technology of China, 2017. | |
53 | WASAND, NIKOLOVA, KONDIPARTYK. The wetting and spreading of nanofluids on solids: role of the structural disjoining pressure[J]. Current Opinion in Colloid & Interface Science, 2011, 16(4): 344-349. |
54 | LIM S, ZHANGH, WUP, et al. The dynamic spreading of nanofluids on solid surfaces-role of the nanofilm structural disjoining pressure[J]. Journal of Colloid & Interface Science, 2016, 470: 22-30. |
55 | LIM S, WASAND. Structural disjoining pressure induced solid particle removal from solid substrates using nanofluids[J]. Journal of Colloid & Interface Science, 2017, 500: 96-104. |
56 | 顾春元. 石油储层微通道纳米减阻机理研究[D]. 上海: 上海大学, 2008. |
GUChunyuan. Research on nano-resistance mechanism of micropores in petroleum reservoirs[D]. Shanghai: Shanghai University, 2008. | |
57 | 顾春元, 狄勤丰, 沈琛, 等. 疏水纳米颗粒在油层微孔道中的吸附机制[J]. 石油勘探与开发, 2011, 38(1):84-89. |
GUChunyuan, DIQinfeng, SHENChen, et al. Adsorption of hydrophobic nanoparticles in reservoir microchannels [J]. Petroleum Exploration and Development, 2011, 38(1): 84-89. | |
58 | 常迎梅. 疏水性纳米颗粒在储层微通道壁面的吸附机制[J]. 石油天然气学报, 2010, 32(1): 106-109. |
CHANGYingmei. Adsorption mechanism of hydrophobic nanoparticles on the microporous wall of reservoirs[J]. Journal of Oil and Gas Technology, 2010, 32(1): 106-109. | |
59 | 吴志坚, 叶秀深. 纳米粒子在固体基质表面的吸附[J]. 材料研究, 2010, 24(19): 8-12. |
WUZ J, YEX S. Adsorption of nanoparticles on the surface of solid substrate[J]. Materials Review, 2010, 24(19): 8-12. | |
60 | DINGH , RAHMANS . Experimental and theoretical study of wettability alteration during low salinity water flooding—An state of the art review[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2017, 520: 622-639. |
61 | RABINOVICHY I . Use of atomic force microscope for the measurements of hydrophobic forces between silanated silica plate and glass sphere[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 1994, 93(6): 263-273. |
62 | DEHGHAN MONFAREDA , HOSSEING M , ABBASH , et al. Potential application of silica nanoparticles for wettability alteration of oil-wet calcite: a mechanistic study[J]. Energy & Fuels, 2016, 30(5): 3947-3961. |
63 | AMRAEIA, FAKHROUEIANZ, BAHRAMIANA. Influence of new SiO2 nanofluids on surface wettability and interfacial tension behaviour between oil-water interface in EOR processes[J]. Journal of Nano Research, 2013, 26(1):1-8. |
[1] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[2] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[4] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[5] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 张岱凌, 丁玉梅, 左夏华, 黎昊为, 杨卫民, 阎华, 安瑛. 废弃墨粉纳米流体的光热特性[J]. 化工进展, 2023, 42(9): 4791-4798. |
[9] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[10] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[11] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[12] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[13] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[14] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[15] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |