[1] BETTS R A, JONES C D, KNIGHT J R, et al. El Niño and a record CO2 rise[J]. Nature Climate Change, 2016, 9:806-810.
[2] 孙亚伟, 谢美连, 刘庆岭, 等. 膜法分离燃煤电厂烟气中CO2的研究现状及进展[J].化工进展, 2017, 36(5):1880-1889. SUN Y W, XIE M L, LIU Q L, et al. Membrane-based carbon dioxide separation from flue gases of coal-fired power plant-current status and developments[J]. Chemical Industry and Engineering Progress, 2017, 36(5):1880-1889.
[3] 孙荣岳, 叶江明, 毕小龙, 等.丙酸改性提高电石渣捕集CO2性能的动力学分析[J].化工进展, 2017, 36(6):2325-2330. SUN R Y, YE J M, BI X L, et al. Kinetic analysis on CO2 capture performance of carbide slag modified by propionic acid[J].Chemical Industry and Engineering Progress, 2017, 36(6):2325-2330.
[4] COPPOLA A, SCALA F, SALATINO P, et al. Fluidized bed calcium looping cycles for CO2 capture under oxy-firing calcination conditions:Part 1. Assessment of six limestones[J]. Chemical Engineering Journal, 2013, 231:537-543.
[5] MANOVIC V, ANTHONY E J. Screening of binders for pelletization of CaO-based sorbents for CO2 capture[J]. Energy Fuels, 2009, 23:4797-4804.
[6] WU Y, MANOVIC V, HE I, et al. Modified lime-based pellet sorbents for high-temperature CO2 capture:reactivity and attrition behavior[J]. Fuel, 2012, 96:454-461.
[7] RIDHA F N, MANOVIC V, WU Y, et al. Pelletized CaO-based sorbents treated with organic acids for enhanced CO2 capture in Ca-looping cycles[J]. International Journal of Greenhouse Gas Control, 2013, 17:357-365.
[8] RIDHA F N, MANOVIC V, MACCHI A, et al. High-temperature CO2 capture cycles for CaO-based pellets with Kaolin-based binders[J]. International Journal of Greenhouse Gas Control, 2012, 6:164-170.
[9] SU C, DUAN L, DONAT F, et al. From waste to high value utilization of spent bleaching clay in synthesizing high-performance calcium-based sorbent for CO2 capture[J]. Applied Energy, 2018, 210:117-126.
[10] RIDHA F N, WU Y, MANOVIC V, et al. Enhanced CO2 capture by biomass-templated Ca(OH)2-based pellets[J]. Chemical Engineering Journal, 2015, 274:69-75.
[11] ERANS M, BEISHEIM T, MANOVIC V, et al. Effect of SO2 and steam on CO2 capture performance of biomass-templated calcium aluminate pellets[J]. Faraday Discussions, 2016, 192:97-111.
[12] SUN J, LIU W, HU Y, et al. Structurally improved, core-inshell, CaO-based sorbent pellets for CO2 capture[J]. Energy Fuels, 2015, 29:6636-6644.
[13] HU Y, LIU W, PENG Y, et al. One-step synthesis of highly efficient CaO-based CO2 sorbent pellets via gel-casting technique[J]. Fuel Processing Technology, 2017, 160:70-77.
[14] 潘家祯, 孙晓明. 用挤出滚圆法制造球形微丸微粒的基本方法和设备[J]. 化工进展, 1998, 17(3):44-46. PAN J Z, SUN X M. The method and apparatus to manufacture spherical particles by extrution-spheronization method[J]. Chemical Industry and Engineering Progress, 1998, 17(3):44-46.
[15] KNIGHT A, ELLIS N, GRACE J R, et al. CO2 sorbent attrition testing for fluidized bed systems[J]. Powder Technology, 2014, 266:412-423.
[16] RIDHA F N, LU D Y, SYMONDS R T, et al. Attrition of CaO-based pellets in a 0.1 MWth dual fluidized bed pilot plant for post-combustion CO2 capture[J]. Powder Technology, 2016, 291:60-65.
[17] MA X T, LI Y J, CHI C Y, et al. CO2 capture performance of mesoporous synthetic sorbent fabricated using carbide slag under realistic calcium looping conditions[J]. Energy & Fuels, 2017, 31(7):7299-7308.
[18] ZHANG Y, LIU W, YANG X, et al. Incorporation of CaO in inert solid matrix by spray drying sol mixture of precursors[J]. RSC Advances, 2016, 6(62):57658-57666.
[19] QIN C, YIN J, HUI A, et al. Performance of extruded particles from calcium hydroxide and cement for CO2 capture[J]. Energy & Fuels, 2012, 26(1):154-161.
[20] WU Y, MANOVIC V, HE I, et al. Modified lime-based pellet sorbents for high-temperature CO2 capture:Reactivity and attrition behavior[J]. Fuel, 2012, 96(7):454-461.
[21] LI Y, SUN R, LIU C, et al. CO2 capture by carbide slag from chlor-alkali plant in calcination/carbonation cycles[J]. International Journal of Greenhouse Gas Control, 2012, 9(3):117-123. |