[1] CIESLINSKI T J. Nucleate pool boiling on porous metallic coatings[J]. Experimental Thermal and Fluid Science, 2002,25(7):557-564.
[2] MIN D H,HWANG G S,USTA Y, et al. 2-D and 3-D modulated porous coatings for enhanced pool boiling[J]. International Journal of Heat and Mass Transfer,2009, 52(11/12):2607-2613.
[3] ALI A F, EL-GENK M S. Effect of inclination on saturation boiling of PF-5060 dielectric liquid on 80-and 137-μm thick copper micro-porous surfaces[J]. International Journal of Thermal Sciences, 2012, 53:42-48.
[4] SUN Y, ZHANG L, XU H, et al. Subcooled flow boiling heat transfer from microporous surfaces in a small channel[J]. International Journal of Thermal Sciences, 2011, 50(6):881-889.
[5] 陈宏霞, 黄林滨, 宫逸飞. 多孔结构及表面浸润性对池沸腾传热影响的研究进展[J]. 化工进展, 2017, 36(8):2798-2808. CHEN Hongxia, HUANG Linbin, GONG Yife. Progress on boiling heat transfer from porous structure and surface wettability[J]. Chemical Industry and Engineering Progress, 2017, 36(8):2798-2808.
[6] HEE SEOK A, SATHYAMURTHI V, BANERJEE D. Pool boiling experiments on a nano-structured surface[J]. IEEE Transactions on Components and Packaging Technologies, 2009, 32(1):156-165.
[7] SHOJAEIAN M, KOSAR A. Pool boiling and flow boiling on micro and nano structured surfaces[J]. Experimental Thermal and Fluid Science, 2015, 63:45-73.
[8] NIU G, LI J. Comparative studies of pool boiling heat transfer with nano-fluids on porous surface[J]. Heat and Mass Transfer, 2015, 51(12):1769-1777.
[9] ZHANG B J, KIM K J, YOON H. Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26):7487-7498.
[10] 柴永志, 张伟, 李亚, 等. 非均匀润湿性微通道表面池沸腾换热特性[J]. 化工学报, 2017, 68(5):1852-1859. CHAI Yongzhi, ZHANG Wei, LI Ya, et al. Pool boiling heat transfer on heterogeneous wetting microchannel surfaces[J]. CIESC Journal, 2017, 68(5):1852-1859.
[11] LI C, WANG Z, WANG P I, et al. Nanostructured copper interfaces for enhanced boiling[J]. Small, 2008, 4(8):1084-1088.
[12] JI X, XU J, ZHAO Z, et al. Pool boiling heat transfer on uniform and non-uniform porous coating surfaces[J]. Experimental Thermal and Fluid Science, 2013, 48:198-212.
[13] 刘阿龙, 徐宏, 王学生, 等. 复合粉末多孔表面管的沸腾传热[J]. 化工学报, 2006, 57(4):726-730. LIU Along, XU Hong, WANG Xuesheng, et al. Boiling heat transfer on composite powder porous surface tubes[J]. CIESC Journal, 2006, 57(4):726-730.
[14] 郭兆阳, 徐鹏, 王元华, 等. 烧结型多孔表面管外池沸腾传热特性[J]. 化工学报, 2012, 63(12):3798-3804. GUO Zhaoyang, XU Peng, WANG Yuanhua, et al. Pool boiling heat transfer on sintered porous coating tubes[J]. CIESC Journal, 2012, 63(12):3798-3804.
[15] YU H, LIAN Z, WAN Y, et al. Fabrication of durable superamphiphobic aluminum alloy surfaces with anisotropic sliding by HS-WEDM and solution immersion processes[J]. Surface and Coatings Technology, 2015, 275:112-119.
[16] LIAN Z, XU J, WENG Z, et al. Research on HS-WEDM and chemical etching technology of superamphiphobic surfaces on Al substrates[J]. Micro and Nano Letters, 2016, 11(8):425-429.
[17] 张超. 冷电极电火花加工温度控制及蚀除机理研究[D]. 南京:南京航空航天大学, 2017. ZHANG Chao. Research on temperature control and removal mechanism by cool electrode of electrical discharge machining[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017.
[18] 张振夫. 钛合金表面微结构电火花加工及其水润滑摩擦学特性研究[D]. 南京:南京航空航天大学, 2009. ZHANG Zhenfu. Surface microstructures on titanium alloy with edm and their tribological properties in water lubrication[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2009.
[19] 高绪宝, 顾琳, 赵万生, 等. 混粉电火花加工工件表面质量影响因素分析[J]. 制造业自动化, 2009, 3(3):1-4. GAO Xubao, GU Lin, ZHAO Wansheng, et al. Analysis of the surface integrity generated by the powder-mixed EDM[J]. Manufacturing Automation, 2009, 3(3):1-4.
[20] MUTHURAMALINGAM T, MOHAN B. A review on influence of electrical process parameters in EDM process[J]. Archives of Civil and Mechanical Engineering, 2015, 15(1):87-94.
[21] WENZEL R N. Resistance of solid surfaces to weting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8):988-994.
[22] DONG L, QUAN X, CHENG P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures[J]. International Journal of Heat and Mass Transfer, 2014, 71(4):189-196.
[23] PARK Y, KIM H, KIM J, et al. Measurement of liquid-vapor phase distribution on nano-and microstructured boiling surfaces[J]. International Journal of Multiphase Flow, 2016, 81:67-76.
[24] CHAKRABORTY S, DEY V, GHOSH S K. A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics[J]. Precision Engineering, 2015, 40:1-6.
[25] LEE W, SON G. Numerical simulation of boiling enhancement on a microstructured surface[J]. International Communications in Heat and Mass Transfer, 2011, 38(2):168-173.
[26] USTINOV A, USTINOV V, MITROVIC J. Pool boiling heat transfer of tandem tubes provided with the novel microstructures[J]. International Journal of Heat and Fluid Flow, 2011, 32(4):777-784.
[27] JO H, KIM S, KIM H, et al. Nucleate boiling performance on nano/microstructures with different wetting surfaces[J]. Nanoscale Research Letters, 2012, 7(1):242-242.
[28] YOUNG LEE C, HOSSAIN BHUIYA M M, KIM K J. Pool boiling heat transfer with nano-porous surface[J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20):4274-4279.
[29] 郑晓欢, 纪献兵, 王野, 等超亲/疏水性表面池沸腾传热研究[J]. 化工进展, 2016, 35(12):3793-3798. ZHENG Xiaohuan, JI Xianbing, WANG Y, et al. Pool boiling heat transfer on superhydrophilic and superhydrophobic surfaces[J]. Chemical Industry and Engineering Progress, 2016, 35(12):3793-3798. |