[1] USMAN M, DAUD W M A W, ABBAS H F. Dry reforming of methane:influence of process parameters-A review[J]. Renewable & Sustainable Energy Reviews, 2015, 45:710-744.
[2] 周立进, 王磊, 黄慧慧, 等. 费托合成工艺研究进展[J]. 石油化工, 2012, 41(12):1429-1436. ZHOU L J, WANG L, HUANG H H, et al. Research progresses in Fischer-Tropsch synthesis process[J]. Petrochemical Technology, 2012, 41(12):1429-1436.
[3] CAPRARⅡS B D, FILIPPIS P D, PALMA V, et al. Rh, Ru and Pt ternary perovskites type oxides BaZr(1-x)MexO3 for methane dry reforming[J]. Applied Catalysis A:General, 2016, 517:47-55.
[4] LI X Y, LI D, TIAN H, et al. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles[J]. Applied Catalysis B:Environmental, 2017, 202:683-694.
[5] SONG X, DONG X L, YIN S L, et al. Effects of Fe partial substitution of La2NiO4/LaNiO3 catalyst precursors prepared by wet impregnation method for the dry reforming of methane[J]. Applied Catalysis A:General, 2016, 526:132-138.
[6] MIRZAEI F, REZAEI M, MESHKANI F. Coprecipitated Ni-Co bimetallic nanocatalysts for methane dry reforming[J]. Chemical Engineering & Technology, 2014, 37(6):973-978.
[7] BAO Z H, LU Y W, HAN J, et al. Highly active and stable Ni-based bimodal pore catalyst for dry reforming of methane[J]. Applied Catalysis A:General, 2015, 491:116-126.
[8] SHIRAZ M H A, REZAEI M, MESHKANI F. The effect of promoters on the CO2 reforming activity and coke formation of nanocrystalline Ni/Al2O3 catalysts prepared by microemulsion method[J]. Korean Journal of Chemical Engineering, 2016, 33(12):3359-3366.
[9] LUNA A E C, IRIARTE M E. Carbon dioxide reforming of methane over a metal modified Ni-Al2O3 catalyst[J]. Applied Catalysis A:General, 2008, 343(1/2):10-15.
[10] MONTOYA J A, ROMERO-PASCUAL E, GIMON C, et al. Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel[J]. Catalysis Today, 2000, 63(1):71-85.
[11] CHAREONPANICH M, TEABPINYOK N, KAEWTAWEESUB S. Effect of nickel particle size on dry reforming temperature[C]//World Congress on Engineering and Computer Science. San Francisco, CA:Int Assoc Engineers, 2008:98-102.
[12] 李建伟, 陈冲, 王丹, 等. 甲烷二氧化碳重整热力学分析[J]. 石油与天然气化工, 2015, 44(3):60-64. LI J W, CHEN C, WANG D, et al. Thermodynamic analysis of carbon dioxide reforming of methane[J]. Chemical Engineering of Oil and Gas, 2015, 44(3):60-64.
[13] XU L L, SONG H L, CHOU L J. One-pot synthesis of ordered mesoporous NiO-CaO-Al2O3 composite oxides for catalyzing CO2 reforming of CH4[J]. ACS Catalysis, 2012, 2:1331-1342.
[14] SHANG Z Y, LI S G, LI L, et al. Highly active and stable alumina supported nickel nanoparticle catalysts for dry reforming of methane[J]. Applied Catalysis B:Environmental, 2017, 201:302-309.
[15] ZHOU L, LI L D, WEI N N, et al. Effect of NiAl2O4 formation on Ni/Al2O3 stability during dry reforming of methane[J]. ChemCatChem, 2015, 7(16):2508-2516.
[16] KAWI S, KATHIRASER Y, NI J, et al. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane[J]. ChemSusChem, 2015, 8(21):3556-3575.
[17] KIM J H, SUH D J, PARK T J, et al. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts[J]. Applied Catalysis A:General, 2000, 197(2):191-200.
[18] IZQUIERDO U, BARRIO V L, BIZKARRA K, et al. Ni and Rh-Ni catalysts supported on zeolites L for hydrogen and syngas production by biogas reforming processes[J]. Chemical Engineering Journal, 2014, 238:178-188.
[19] ABDOLLAHIFAR M, HAGHIGHI M, SHARIFI M. Dry reforming of methane over nanostructured Co/Y catalyst for hydrogen production:effect of ultrasound irradiation and Co loading on catalyst properties and performance[J]. Energy Conversion and Management, 2015, 103:1101-1112.
[20] ESTEPHANE J, AYOUB M, SAFIEH K, et al. CO2 reforming of CH4 over highly active and stable yRhNix/NaY catalysts[J]. Comptes Rendus Chimie, 2015, 18(3):277-282.
[21] MORADI G, KHEZELI F, HEMMATI H. Syngas production with dry reforming of methane over Ni/ZSM-5 catalysts[J]. Journal of Natural Gas Science and Engineering, 2016, 33:657-665.
[22] LIU D P, QUEK X Y, WAH H H A, et al. Carbon dioxide reforming of methane over nickel-grafted SBA-15 and MCM-41 catalysts[J]. Catalysis Today, 2009, 148(3/4):243-250.
[23] QIAN L P, MA Z, REN Y, et al. Investigation of La promotion mechanism on Ni/SBA-15 catalysts in CH4 reforming with CO2[J]. Fuel, 2014, 122:47-53.
[24] ZHANG Q L, ZHANG T F, SHI Y Z, et al. A sintering and carbon-resistant Ni-SBA-15 catalyst prepared by solid-state grinding method for dry reforming of methane[J]. Journal of CO2 Utilization, 2017, 17:10-19.
[25] KAYDOUH M N, HASSAN N E, DAVIDSON A, et al. Highly active and stable Ni/SBA-15 catalysts prepared by a "two solvents" method for dry reforming of methane[J]. Microporous and Mesoporous Materials, 2016, 220:99-109.
[26] ALBARAZI A, GALVEZ M E, COSTA P D. Synthesis strategies of ceria-zirconia doped Ni/SBA-15 catalysts for methane dry reforming[J]. Catalysis Communications, 2015, 59:108-112.
[27] WANG M Z, ZHANG Q L, ZHANG T F, et al. Facile one-pot synthesis of highly dispersed Ni nanoparticles embedded in HMS for dry reforming of methane[J]. Chemical Engineering Journal, 2017, 313:1370-1381.
[28] SUTTHIUMPORN K, KAWI S. Promotional effect of alkaline earth over Ni-La2O3 catalyst for CO2 reforming of CH4:role of surface oxygen species on H2 production and carbon suppression[J]. International Journal of Hydrogen Energy, 2011, 36(22):14435-14446.
[29] YANG E H, NOH Y S, RAMESH S, et al. The effect of promoters in La0.9M0.1Ni0.5Fe0.5O3(M=Sr, Ca) perovskite catalysts on dry reforming of methane[J]. Fuel Processing Technology, 2015, 134:404-413.
[30] GHODS B, MESHKANI F, REZAEI M. Effects of alkaline earth promoters on the catalytic performance of the nickel catalysts supported on high surface area mesoporous magnesium silicate in dry reforming reaction[J]. International Journal of Hydrogen Energy, 2016, 41(48):22913-22921.
[31] LAOSIRIPOJANA N, ASSABUMRUNGRAT S. Catalytic dry reforming of methane over high surface area ceria[J]. Applied Catalysis B:Environmental, 2005, 60(1/2):107-116.
[32] AKRI M, CHAFIK T, GRANGER P, et al. Novel nickel promoted illite clay based catalyst for autothermal dry reforming of methane[J]. Fuel, 2016, 178:139-147.
[33] DEBEK R, RADLIK M, MOTAK M, et al. Ni-containing Ce-promoted hydrotalcite derived materials as catalysts for methane reforming with carbon dioxide at low temperature-On the effect of basicity[J]. Catalysis Today, 2015, 257:59-65.
[34] DEBEK R, GALVEZ M E, LAUNAY F, et al. Low temperature dry methane reforming over Ce, Zr and CeZr promoted Ni-Mg-Al hydrotalcite-derived catalysts[J]. International Journal of Hydrogen Energy, 2016, 41(27):11616-11623.
[35] YUAN W J, WANG Y Q, ZOU Y Q, et al. Dry reforming of methane for syngas production over well-dispersed mesoporous NiCe0.5Zr0.5O3 with Ni nanoparticles immobilized[J]. Catalysis Letters, 2016, 146(9):1663-1673.
[36] LI Z W, MO L Y, KATHIRASER Y, et al. Yolk-satellite-shell structured Ni-yolk@Ni@SiO2 nanocomposite:superb catalyst toward methane CO2 reforming reaction[J]. ACS Catalysis, 2014, 4(5):1526-1536.
[37] PENG H G, ZHANG X H, ZHANG L, et al. One-pot facile fabrication of multiple nickel nanoparticles confined in microporous silica giving a multiple-cores@shell structure as a highly efficient catalyst for methane dry reforming[J]. ChemCatChem, 2017, 9(1):127-136.
[38] MORADI G R, RAHMANZADEH M, KHOSRAVIAN F. The effects of partial substitution of Ni by Zn in LaNiO3 perovskite catalyst for methane dry reforming[J]. Journal of CO2 Utilization, 2014, 6:7-11.
[39] PERENIGUEZ R, DELACRUZ V M G, HOLGADO J P, et al. Synthesis and characterization of a LaNiO3 perovskite as precursor for methane reforming reactions catalysts[J]. Applied Catalysis B:Environmental, 2010, 93(3/4):346-353.
[40] CHAMOUMI M, ABATZOGLOU N. NiFe2O4 production from α-Fe2O3 via improved solid state reaction:application as catalyst in CH4 dry reforming[J]. Canadian Journal of Chemical Engineering, 2016, 94(9):1801-1808.
[41] BENRABAA R, LOFBERG A, CABALLERO J G, et al. Sol-gel synthesis and characterization of silica supported nickel ferrite catalysts for dry reforming of methane[J]. Catalysis Communications, 2015, 58:127-131.
[42] METTE K, KUHL S, DUDDER H, et al. Stable performance of Ni catalysts in the dry reforming of methane at high temperatures for the efficient conversion of CO2 into syngas[J]. ChemCatChem, 2014, 6(1):100-104.
[43] DEBEK R, ZUBEK K, MOTAK M, et al. Ni-Al hydrotalcite-like material as the catalyst precursors for the dry reforming of methane at low temperature[J]. Comptes Rendus Chimie, 2015, 18(11):1205-1210.
[44] ZHU Y J, ZHANG S H, CHEN B B, et al. Effect of Mg/Al ratio of NiMgAl mixed oxide catalyst derived from hydrotalcite for carbon dioxide reforming of methane[J]. Catalysis Today, 2016, 264:163-170. |