[1] BLOTTNITZ H V, CURRAN M A. A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective[J]. Journal of Cleaner Production, 2007, 15(7):607-619.
[2] 葛庆杰, 徐恒泳, 李文钊. 煤层气经合成气制液体燃料的关键技术[J]. 化工进展, 2009, 28(6):917-921. GE Q J, XU H Y, LI W Z. Key techniques of liquid fuel synthesis from coal-bed methane[J]. Chemical Industry and Engineering Progress, 2009, 28(6):917-921.
[3] SURISETTY V R, DALAI A K, KOZINSKI J. Alcohols as alternative fuels:an overview[J]. Applied Catalysis A:General, 2011, 404(1/2):1-11.
[4] 士丽敏, 储伟, 刘增超.合成气制低碳醇用催化剂的研究进展[J]. 化工进展, 2011, 30(1):162-166. SHI L M, CHU W, LIU Z C. Research progress of catalysts for higher-alcohol synthesis from syngas[J]. Chemical Industry and Engineering Progress, 2011, 30(1):162-166.
[5] GUPTA M, SMITH M L, SPIVEY J J. Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts[J]. ACS Catalysis, 2011, 1(6):641-656.
[6] HERACLEOUS E, LIAKAKOU E T, LAPPAS A A, et al. Investigation of K-promoted Cu-Zn-Al, Cu-X-Al and Cu-Zn-X (X=Cr, Mn) catalysts for carbon monoxide hydrogenation to higher alcohols[J]. Applied Catalysis A:General, 2013, 455(2):145-154.
[7] SUBRAMANIAN N D, BALAJI G, KUMAR C, et al. Development of cobalt-copper nanoparticles as catalysts for higher alcohol synthesis from syngas[J]. Catalysis Today, 2009, 147(2):100-106.
[8] CAO A, LIU G, YUE Y, et al. Nanoparticles of Cu-Co alloy derived from layered double hydroxides and their catalytic performance for higher alcohol synthesis from syngas[J]. RSC Advances, 2015, 5(72):58804-58812.
[9] DONG X, LIANG X L, LI H Y, et al. Preparation and characterization of carbon nanotube-promoted Co-Cu catalyst for higher alcohol synthesis from syngas[J]. Catalysis Today, 2009, 147(2):158-165.
[10] PEI Y, JIAN S, CHEN Y, et al. Synthesis of higher alcohols by the Fischer-Tropsch reaction over activated carbon supported CoCuMn catalysts[J]. RSC Advances, 2015, 5(93):76330-76336.
[11] LIAO P Y, ZHANG C, ZHANG L J, et al. Effect of promoter and CO2 content in the feed on the performance of CuFeZr catalyst in the synthesis of higher alcohol from syngas[J]. Journal of Fuel Chemistry & Technology, 2017, 45(5):547-555.
[12] 史雪敏, 杨绪壮, 白凤华, 等. 合成气制低碳醇钼基催化剂助剂的研究进展[J]. 化工进展, 2010, 29(12):2291-2297. SHI X M, YANG X Z, BAI F H, et al. Progress in additives of molybdenum based catalysts for higher alcohol synthesis from syngas[J]. Chemical Industry and Engineering Progress, 2010, 29(12):2291-2297.
[13] WANG J J, XIE J R, HUANG Y H, et al. An efficient Ni-Mo-K sulfide catalyst doped with CNTs for conversion of syngas to ethanol and higher alcohols[J]. Applied Catalysis A:General, 2013, 468(12):44-51.
[14] YU J, MAO D, HAN L, et al. CO hydrogenation over Fe-promoted Rh-Mn-Li/SiO2 catalyst:the effect of sequences for introducing the Fe promoter[J]. Fuel Processing Technology, 2013, 112(10):100-105.
[15] SUGIER A, FREUND E. Process for manufacturing alcohols, particularly linear saturated primary alcohols from synthesis gas:US4122110[P]. 1978-05-26.
[16] COURTY P, CHAUMETTE P, DURAND D, et al. Process for manufacturing a mixture of primary alcohols from a synthesis gas, in the presence of a catalyst containing copper, cobalt, zinc and at least one alkali and/or alkaline earth metal:US4780481A[P]. 1987-04-21.
[17] VOLKOVA G G, YURIEVA T M, PLYASOVA L M, et al. Role of the Cu-Co alloy and cobalt carbide in higher alcohol synthesis[J]. Journal of Molecular Catalysis A:Chemical, 2000, 158(1):389-393.
[18] XIANG Y Z, NORBERT K. Cobalt-copper based catalysts for higher terminal alcohols synthesis via Fischer-Tropsch reaction[J]. Journal of Energy Chemistry, 2016, 25(6):895-906.
[19] PRIETO G, BEIJER S, SMITH M L, et al. Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols[J]. Angewandte Chemie, 2014, 53(25):6397-6401.
[20] CAO A, LIU G, WANG L, et al. Growing layered double hydroxides on CNTs and their catalytic performance for higher alcohol synthesis from syngas[J]. Journal of Materials Science, 2016, 51(11):5216-5231.
[21] EQUALLY G T C, ZHAO Y, CHEN H, et al. Core-shell Cu@(CuCo-alloy)/Al2O3catalysts for the synthesis of higher alcohols from syngas[J]. Green Chemistry, 2015, 17(3):1525-1534.
[22] LIU G, GENG Y, PAN D, et al. Bi-metal Cu-Co from LaCo1-xCuxO3 perovskite supported on zirconia for the synthesis of higher alcohols[J]. Fuel Processing Technology, 2014, 128:289-296.
[23] 岑亚青, 李小年, 刘化章. 酸-碱交替沉淀法制备铜基甲醇合成催化剂[J]. 催化学报, 2006, 27(3):210-216 CEN Y Q, LI X N, LIU H Z. Preparation of copper-based catalysts for methanol synthesis by acid-alkali-based alternate precipitation method[J]. Chinese Journal of Catalysis, 2006, 27(3):210-216.
[24] 林胜达, 唐浩东, 吕兆坡, 等. 沉淀方法对铜基甲醇合成催化剂前躯体及其性能的影响[J]. 催化学报, 2010, 31(10):1257-1262. LIN S D, TANG H D, LV Z P, et al. Influence of precipitation methods on precursors and properties of Cu-based catalyst for methanol synthesis[J]. Chinese Journal of Catalysis, 2010, 31(10):1257-1262.
[25] 吕兆坡, 唐浩东, 刘采来, 等. 酸处理活性炭对其负载的Co-Zr-La催化剂上CO加氢制高碳醇反应性能的影响[J]. 催化学报, 2011, 32(7):1250-1255 LV Z P, TANG H D, LIU C L, et al. Effect of acid pretreatment of activated carbon(AC) on catalytic performance of Co-Zr-La/AC catalysts for higher alcohols production from syngas[J]. Chinese Journal of Catalysis, 2010, 32(7):1257-1262.
[26] 王欢, 唐浩东, 卢保同, 等. 炭载体对钴基催化剂制混合醇的影响[J]. 天然气化工, 2014, 39(5):7-11. WANG H, TANG H D, LU B T, et al. Effects of Co-based catalysts supported on different carbons on synthesis of mixed higher alcohols from syngas[J]. Natural Gas Chemical Industry, 2014, 39(5):7-11.
[27] XIAO K, BAO Z H, QI X Z, et al. Advances in bifunctional catalysis for higher alcohol synthesis from syngas[J]. Chinese Journal of Catalysis, 2013, 34(1):116-129.
[28] XU X, DOESBURG E B M, SCHOLTEN J J F. Synthesis of higher alcohols from syngas-Recently patented catalysts and tentative ideas on the mechanism[J]. Catalysis Today, 1987, 2(1):125-170.
[29] XU X C, SU J, TIAN P, et al. First-principles study of C2 oxygenates synthesis directly from syngas over CoCu bimetallic catalysts[J]. Journal of Physical Chemistry C, 2015, 119(1):216-227.
[30] SU J J, ZHANG Z P, FU D L, et al. Higher alcohols synthesis from syngas over CoCu/SiO2, catalysts:dynamic structure and the role of Cu[J]. Journal of Catalysis, 2016, 336:94-106.
[31] MOUADDIB N, PERRICHON V, MARTIN G A. Characterization of copper-cobalt catalysts for alcohol synthesis from syngas[J]. Applied Catalysis A:General, 1994, 118(1):63-72
[32] WANG J, CHERNAVSKⅡ P A, WANG Y, et al. Influence of the support and promotion on the structure and catalytic performance of copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Fuel, 2013, 103(1):1111-1122.
[33] 王峰云, 张慧, 辛勤, 等. 不同方法制备的Cu-Co低碳醇合成催化剂的比较研究:Ⅰ. 吸附态CO的红外光谱[J]. 催化学报, 1994, 15(2):79-84. WANG F Y, ZHANG H, XIN Q, et al. A comparative study on Cu-Co catalysts differing in preparation for the synthesis of lower alcohols:Ⅰ. IR spectra of adsorbed CO[J]. Chinese Journal of Catalysis, 1994, 15(2):79-84.
[34] 李静, 汪景春, 窦伯生, 等. Cu-Co合成醇催化剂制备方法的研究[J]. 物理化学学报, 1997, 13(3):278-282. LI J, WANG J C, DOU B S, et al. Preparation of Cu-Co catalyst for alcohol synthesis[J]. Acta Physico-Chimica Sinica, 1997, 13(3):278-282.
[35] WANG J, CHERNAVSKⅡ P A, KHODAKOV A Y, et al. Structure and catalytic performance of alumina-supported copper-cobalt catalysts for carbon monoxide hydrogenation[J]. Journal of Catalysis, 2012, 286(4):51-61.
[36] EDELSTEIN A S, HARRIS V G, ROLISON D R, et al. Inversion of surface composition and evolution of nanostructure in Cu/Co nanocrystals[J]. Applied Physics Letters, 1999, 75(12):1810-1810.
[37] LIU J G, DING M Y, WANG T J, et al. Promoting effect of cobalt addition on higher alcohols synthesis over copper-based catalysts[J]. Advanced Materials Research, 2012, 550/553:270-275.
[38] XIANG Y, CHITRY V, LIDDICOAT P, et al. Long-chain terminal alcohols through catalytic CO hydrogenation[J]. Journal of the American Chemical Society, 2013, 135(19):7114-7117.
[39] LI G, WANG Q, LI D, et al. Structure evolution during the cooling and coalesced cooling processes of Cu-Co bimetallic clusters[J]. Physics Letters A, 2008, 372(45):6764-6769.
[40] XU H Y, CHU W, SHI L M, et al. Effect of glow discharge plasma on copper-cobalt-aluminum catalysts for higher alcohols synthesis[J]. Journal of Fuel Chemistry & Technology, 2009, 37(2):212-216.
[41] SHI L, CHU W, DENG S, et al. Catalytic properties of Cu/Co/Zn/Zr oxides prepared by various methods[J]. Journal of Natural Gas Chemistry, 2008, 17(4):397-402.
[42] CARENCO S, TUXEN A, CHINTAPALLI M, et al. Dealloying of cobalt from CuCo nanoparticles under syngas exposure[J]. J Phys Chem C, 2013, 117(12):6259-6266.
[43] CHAUMETTE P, COURTY P, KIENNEMANN A, et al. Evolution of alcohol synthesis catalysts under syngas[J]. Industrial & Engineering Chemistry Research, 1994, 6(33):1460-1467.
[44] LIU G L, NIU T, CAO A, et al. The deactivation of Cu-Co alloy nanoparticles supported on ZrO2 for higher alcohols synthesis from syngas[J]. Fuel, 2016, 176:1-10.
[45] YANG Y Z, QI X Z, WANG X X, et al. Deactivation study of CuCo catalyst for higher alcohol synthesis via syngas[J]. Catalysis Today, 2016, 270:101-107.
[46] ZHAO M Q, ZHANG Q, HUANG J Q, et al. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-Properties, synthesis, and applications[J]. Advanced Functional Materials, 2012, 22(4):675-694.
[47] NIU T, LIU G L, CHEN Y, et al. Hydrothermal synthesis of graphene-LaFeO3 composite supported with Cu-Co nanocatalyst for higher alcohol synthesis from syngas[J]. Applied Surface Science, 2016, 364(7):388-399.
[48] TIEN-THAO N, ALAMDARI H, ZAHEDI-NIAKI M H, et al. LaCo1-xCuxO3-δ perovskite catalysts for higher alcohol synthesis[J]. Applied Catalysis A:General, 2006, 311:204-212. |