[1] SEGURA Y, MARTINEZ F, MELERO J A. Effective pharmaceutical wastewater degradation by Fenton oxidation with zero-valent iron[J]. Applied Catalysis B:Environmental, 2013, 136:64-69.
[2] 刘晓冉, 李金花, 周保学, 等. 铁碳微电解处理中活性炭吸附作用及其影响[J]. 环境科学与技术, 2011, 34(1):128-131. LIU X R, LI J H, ZHOU B X, et al. Role of activated carbon adsorption in iron-carbon micro-electrolysis process for wastewater treatment[J]. Environmental Science and Technology, 2011, 34(1):128-131.
[3] ZHOU H M, LV P, SHEN Y Y, et al. Identification of degradation products of ionic liquids in an ultrasound assisted zero-valent iron activated carbon micro-electrolysis system and their degradation mechanism[J]. Water Research, 2013, 47(10):3514-3522.
[4] DOU X, LI R, ZHAO B, et al. Arsenate removal from water by zero-valent iron/activated carbon galvanic couples[J]. Journal of Hazardous Materials, 2010, 182(1):108-114.
[5] GHAUCH A. Rapid removal of flutriafol in water by zero-valent iron powder[J]. Chemosphere, 2008, 71(5):816-826.
[6] NING X A, WEN W, ZHANG Y P, et al. Enhanced dewaterability of textile dyeing sludge using micro-electrolysis pretreatment[J]. Journal of Environmental Management, 2015, 161:181-187.
[7] LAI B, ZHOU Y, QIN H, et al. Pretreatment of wastewater from acrylonitrile-butadiene-styrene (ABS) resin manufacturing by micro-electrolysis[J]. Chemical Engineering Journal, 2012, 179:1-7.
[8] BRILLAS E, SIRES I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry[J]. Chemical Reviews, 2009, 109(12):6570.
[9] SUN Y, PIGNATELLO J J. Photochemical reactions involved in the total mineralization of 2,4-D by iron(3+)/hydrogen peroxide/UV[J]. Environmental Science and Technology, 1993, 27(2):304-310.
[10] NAMKUNG K C, BURGESS A E, BREMNER D H. A Fenton-like oxidation process using corrosion of iron metal sheet surfaces in the presence of hydrogen peroxide:a batch process study using model pollutants[J]. Environmental Technology, 2005, 26(3):341.
[11] YING D, PENG J, XU X, et al. Treatment of mature landfill leachate by internal micro-electrolysis integrated with coagulation:a comparative study on a novel sequencing batch reactor based on zero valent iron[J]. Journal of Hazardous Materials, 2012, 229(5):426-433.
[12] JU F, HU Y Y. Removal of EDTA-chelated copper from aqueous solution by interior microelectrolysis[J]. Separation and Purification Technology, 2011, 78(1):33-41.
[13] YANG D, ENGLEHARDT J D. Hydrogen peroxide-enhanced iron-mediated aeration for the treatment of mature landfill leachate[J]. Journal of Hazardous Materials, 2008, 153(1/2):293-299.
[14] FATEMINIA F S, FALAMAKI C. Zero valent nano-sized iron/clinoptilolite modified with zero valent copper for reductive nitrate removal[J]. Process Safety and Environmental Protection, 2013, 91(4):304-310.
[15] HUANG Y H, ZHANG T C. Effects of low pH on nitrate reduction by iron powder[J]. Water Research, 2004, 38(11):2631-2642.
[16] LUO J H, SONG G Y, LIU J Y, et al. Mechanism of enhanced nitrate reduction via micro-electrolysis at the powdered zero-valent iron/activated carbon interface[J]. Journal of Colloid and Interface Science, 2014, 435:21-25.
[17] WANG X Q, GONG X K, ZHANG Q X, et al. Degradation mechanism of direct pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction[J]. Journal of Environmental Sciences, 2013, 25:S63-S68.
[18] LAI B, ZHOU Y X, YANG P, et al. Degradation of 3,3'-iminobis-propanenitrile in aqueous solution by Fe0/GAC micro-electrolysis system[J]. Chemosphere, 2013, 90(4):1470-1477.
[19] WANG L Q, YANG Q, WANG D B, et al. Advanced landfill leachate treatment using iron-carbon microelectrolysis-Fenton process:Process optimization and column experiments[J]. Journal of Hazardous Materials, 2016, 318:460-467.
[20] YING D W, XU X Y, LI K, et al. Design of a novel sequencing batch internal micro-electrolysis reactor for treating mature landfill leachate[J]. Chemical Engineering Research and Design, 2012, 90(12):2278-2286.
[21] 李胜海, 程谣, 许晓毅, 等. 铁碳微电解预处理含吡啶的有机废水[J]. 水处理技术, 2017, 43(2):98-101, 106. LI S H, CHENG Y, XU X Y, et al. Pretreatment of organic wastewater containing pyridines by iron-carbon micro-electrolysis[J]. Technology of Water Treatment, 2017, 43(2):98-101, 106.
[22] QIN Z, LIU S, LIANG S X, et al. Advanced treatment of pharmaceutical wastewater with combined micro-electrolysis, Fenton oxidation, and coagulation sedimentation method[J]. Desalination and Water Treatment, 2016, 57(53):1-10.
[23] 涂传青.金属铁与电解法还原难降解有机物反应机理和影响因素的研究[D]. 上海:同济大学, 2006. TU C Q. Study on mechanism and influencing factors of the degradation of recalcitrant organic compounds by metallic iron and electrolytic reduction[D]. Shanghai:Tongji University, 2006.
[24] ZONGO I, LECLERC J P, MAIGA H A, et al. Removal of hexavalent chromium from industrial wastewater by electrocoagulation:a comprehensive comparison of aluminium and iron electrodes[J]. Separation and Purification Technology, 2009, 66(1):159-166.
[25] SUN L, WANG C, JI M, et al. Treatment of mixed chemical wastewater and the agglomeration mechanism via an internal electrolysis filter[J]. Chemical Engineering Journal, 2013, 215:50-56.
[26] 周伟, 庄晓伟, 陈顺伟, 等. 铁碳微电解预处理工业废水研究进展[J]. 工业水处理, 2017, 37(7):5-9. ZHOU W, ZHUANG X W, CHEN S W, et al. Research progress in the pretreatment of industrial wastewater by iron-carbon micro-electrolysis process[J]. Industrial Water Treatment, 2017, 37(7):5-9.
[27] LAI B, ZHOU Y X, WANG J L, et al. Passivation process and the mechanism of packing particles in the Fe0/GAC system during the treatment of ABS resin wastewater[J]. Environmental Technology, 2014, 35(8):973-983.
[28] ZHANG D, WEI S Y, KAILA C, et al. Carbon stabilized iron nanoparticles for environmental remediation[J]. Nanoscale, 2010, 2(6):917-919.
[29] HUANG D Y, YUE Q Y, FU K F, et al. Application for acrylonitrile wastewater treatment by new micro-electrolysis ceramic fillers[J]. Desalination and Water Treatment, 2016, 57(10):4420-4428.
[30] 刘啸乾, 李剑超, 刘琰, 等. 新型铁碳复合材料合成及其对染料废水脱色性能的试验研究[J]. 水处理技术, 2012, 38(8):43-46, 50. LIU X Q, LI J C, LIU Y, et al. Experiment on preparation and performance of iron-carbon composite material for treating dye wastewater[J]. Technology of Water Treatment, 2012, 38(8):43-46, 50.
[31] WANG Y B, FENG M Q, LIU Y H. Treatment of dye wastewater by continuous iron-carbon micro-electrolysis[J]. Environmental Engineering Science, 2016, 33(5):333-340.
[32] WANG Y B, LIU Y H, FU W, et al. Treatment of actual dyeing wastewater by continuous iron-carbon micro-electrolysis process[J]. Advanced Materials Research, 2014, 838:2395-2399.
[33] 刘磊, 刘永红, 王利娜, 等. 微电解材料的制备及其废水连续化处理工艺研究[J]. 工业水处理, 2015, 35(2):60-63. LIU L, LIU Y H, WANG L N, et al. Preparation of iron carbon micro-electrolysis materials and research on its continuous treatment process of actual wastewater[J]. Industrial Water Treatment, 2015, 35(2):60-63.
[34] ZHANG C, ZHOU M H, YU X M, et al. Modified iron-carbon as heterogeneous electro-Fenton catalyst for organic pollutant degradation in near neutral pH condition:Characterization, degradation activity and stability[J]. Electrochimica Acta, 2015, 160:254-262.
[35] ZHOU H M, SHEN Y Y, LV P, et al. Degradation of 1-butyl-3-methylimidazolium chloride ionic liquid by ultrasound and zero-valent iron/activated carbon[J]. Separation and Purification Technology, 2013, 104:208-213.
[36] WANG K, LIU S, ZHANG Q, et al. Pharmaceutical wastewater treatment by internal micro-electrolysis-coagulation, biological treatment and activated carbon adsorption[J]. Environmental Technology, 2009, 30(13):1469-1474.
[37] 傅强根, 胡勇有. 铝炭微电解处理刚果红废水的效果及脱色机理研究[J]. 环境科学学报, 2013, 33(6):1527-1534. FU Q G, HU Y Y. Treatment effect and decolorization mechanism of Congo Red wastewater by aluminum-carbon microelectrolysis[J]. Acta Scientiae Circumstantiae, 2013, 33(6):1527-1534.
[38] XIE R, WU M, QU G, et al. Treatment of coking wastewater by a novel electric assisted micro-electrolysis filter[J]. Journal of Environmental Sciences, 2017. DOI:10.1016/j.jes.2017.05.034.
[39] ZHANG X, DONG W, SUN F, et al. Degradation efficiency and mechanism of azo dye RR2 by a novel ozone aerated internal micro-electrolysis filter[J]. Journal of Hazardous Materials, 2014, 276(9):77.
[40] HAN Y, LI H, LIU M, et al. Purification treatment of dyes wastewater with a novel micro-electrolysis reactor[J]. Separation and Purification Technology, 2016, 170:241-247.
[41] 李洵, 张万友, 苗宇, 等. 炭循环微电解反应器处理腈纶废水的Design-Expert设计优化[J]. 工业水处理, 2011, 31(10):75-78. LI X, ZAHNG W Y, MIAO Y, et al. Design-Expert software design and optimization of the treatment of acrylic fiber wastewater with the charcoal cycle micro-electrolysis reactor[J]. Industrial Water Treatment, 2011, 31(10):75-78.
[42] YING D, XU X, LI K, et al. Design of a novel sequencing batch internal micro-electrolysis reactor for treating mature landfill leachate[J]. Chemical Engineering Research and Design, 2012, 90(12):2278-2286.
[43] FU J, XU Z, LI Q, et al. Treatment of simulated wastewater containing reactive red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite[J]. Journal of Environmental Sciences, 2010, 22(4):512-518.
[44] 马丹丹, 文晨, 季民. 微电解-铁碳内电解耦合预处理高浓度染料废水[J]. 化工进展, 2013, 32(1):205-208. MA D D, WEN C, JI M. Study on treatment of high concentration of dye-wastewater with coupling technique of electrochemical oxidation and internal-electrolysis[J]. Chemical Industry and Engineering Progress, 2013, 32(1):205-208.
[45] YANG S Y, LIANG Z W, YU H D, et al. Chemical oxygen demand removal efficiency and limited factors study of aminosilicone polymers in a water emulsion by iron-carbon micro-electrolysis[J]. Water Environment Research, 2014, 86(2):156-162.
[46] RUAN X C, LIU M Y, ZENG Q F, et al. Degradation and decolorization of reactive red X-3B aqueous solution by ozone integrated with internal micro-electrolysis[J]. Separation and Purification Technology, 2010, 74(2):195-201.
[47] HUANG J G, CHEN J J, XIE Z M, et al. Treatment of nanofiltration concentrates of mature landfill leachate by a coupled process of coagulation and internal micro-electrolysis adding hydrogen peroxide[J]. Environmental Technology, 2015, 36(8):1001-1007.
[48] WANG L Q, YANG Q, WANG D B, et al. Advanced landfill leachate treatment using iron-carbon microelectrolysis-Fenton process:Process optimization and column experiments[J]. Journal of Hazardous Materials, 2016, 318:460-467.
[49] 于昕, 林庚. 微电解-UASB组合工艺处理城市垃圾渗滤液[J]. 工业水处理, 2011, 31(3):30-32. YU X, LIN G. Urban landfill leachate treatment by microelectrolysis-UASB[J]. Industrial Water Treatment, 2011, 31(3):30-32.
[50] ZHOU J, DUAN S H, CHEN Y, et al. Nitrogen removal efficiency of iron-carbon micro-electrolysis system treating high nitrate nitrogen organic pharmaceutical wastewater[J]. J. Cent. S. Univ., Tech, 2009, 16(1):368-373.
[51] WU S Q, QI Y F, FAN C Z, et al. Improvement of anaerobic biological treatment effect by catalytic micro-electrolysis for monensin production wastewater[J]. Chemical Engineering Journal, 2016, 296:260-267.
[52] QI Y F, HE S B, WU S Q, et al. Utilization of micro-electrolysis, up-flow anaerobic sludge bed, anoxic/oxic-activated sludge process, and biological aerated filter in penicillin G wastewater treatment[J]. Desalination and Water Treatment, 2015, 55(6):1480-1487.
[53] 张帆, 李菁, 谭建华, 等. 吸附法处理重金属废水的研究进展[J]. 化工进展, 2013, 32(11):2749-2756. ZAHNG F, LI J, DAN J H, et al. Advance of the treatment of heavy metal wastewater by adsorption[J]. Chemical Industry and Engineering Progress, 2013, 32(11):2749-2756.
[54] WU L M, LIAO L B, LV G C, et al. Micro-electrolysis of Cr(Ⅵ) in the nanoscale zero-valent iron loaded activated carbon[J]. Journal of Hazardous Materials, 2013, 254:277-283.
[55] JU F, HU Y Y, CHENG J H. Removal of chelated Cu(Ⅱ) from aqueous solution by adsorption-coprecipitation with iron hydroxides prepared from micro-electrolysis process[J]. Desalination, 2011, 274:130-135.
[56] LI T C, JIANG B, FENG X, et al. Purification of organic wastewater containing Cu2+ and Cr3+ by a combined process of micro electrolysis and biofilm[J].Chinese Journal of Chemical Engineering, 2003, 11(6):146-150.
[57] 陈晓鸿, 李天国, 徐晓军, 等. 曝气微电解-曝气絮凝法处理高铅锌含量冶炼废水[J]. 水处理技术, 2013, 39(6):99-104. CHEN X H, LI T G, XU X J, et al. Treatment of high concentrations of lead and zinc smelting wastewater by micro-electrolysis and aerated flocculation[J]. Technology of Water Treatment, 2013, 39(6):99-104. |