化工进展 ›› 2018, Vol. 37 ›› Issue (02): 724-736.DOI: 10.16085/j.issn.1000-6613.2017-0949
何昱轩, 张黎明, 郭飞飞, 李鹏刚, 彭稳, 刘航, 罗永明
收稿日期:
2017-05-19
修回日期:
2017-06-09
出版日期:
2018-02-05
发布日期:
2018-02-05
通讯作者:
罗永明,教授,研究方向为水污染控制工程。
作者简介:
何昱轩(1994-),男,硕士研究生。
基金资助:
HE Yuxuan, ZHANG Liming, GUO Feifei, LI Penggang, PENG Wen, LIU Hang, LOU Yongming
Received:
2017-05-19
Revised:
2017-06-09
Online:
2018-02-05
Published:
2018-02-05
摘要: 硅基材料具有高比表面积、多介孔孔道及良好的热稳定性,将其作为吸附剂能够解决许多环境保护问题,因此近年来受到人们的广泛关注。本文主要综述了硅基材料对废水中镉离子吸附的研究进展,对比分析了有机物、无机物、聚合物等不同改性硅材料对溶液中镉离子的去除能力及吸附机理,并通过吸附等温线与动力学模型比较了各类吸附剂的吸附容量及吸附过程。分析表明,材料表面亲水性及官能团的增加有利于去除水体中的镉离子,指出制备高选择性、高吸附量的材料以及提高可回收性将是硅基材料改性修饰的研究热点。此外,提出了一些工业副产品及生物吸附剂对镉离子同样有良好的吸附能力,制备以工农业废弃物为原料的新型硅材料也将成为硅基吸附剂的一个主要研究方向。
中图分类号:
何昱轩, 张黎明, 郭飞飞, 李鹏刚, 彭稳, 刘航, 罗永明. 硅基吸附剂处理含镉废水的研究进展[J]. 化工进展, 2018, 37(02): 724-736.
HE Yuxuan, ZHANG Liming, GUO Feifei, LI Penggang, PENG Wen, LIU Hang, LOU Yongming. Advances in cadmium removal from wastewater by silica-based materials[J]. Chemical Industry and Engineering Progress, 2018, 37(02): 724-736.
[1] 刘应梅,银欢,褚良银. 重金属离子吸附用微凝胶研究新进展[J]. 化工进展, 2016, 35(10):3323-3330. LIU Y M, YIN H, CHU L Y. Progress in development of microgels for adsorption of heavy metal ions[J]. Chemical Industry and Engineering Progress, 2016, 35(10):3323-3330. [2] KAEWSAM P, YU Q. Cadmium (Ⅱ) removal from aqueous solutions by pre-treated biomass of marine alga Padina sp.[J]. Environmental Pollution, 2001, 112(2):209-213. [3] ZAREI M, SHAHPIRI A, ESMAEILNEJAD-AHRANJANI P, et al. Metallothionein-immobilized silica-coated magnetic particles as a novel nanobiohybrid adsorbent for highly efficient removal of cadmium from aqueous solutions[J]. RSC Advances, 2016, 6(52):46785-46793. [4] ROUNAGHI G H, GHAEMI A, CHAMSAZ M. Separation study of some heavy metal cations through a bulk liquid membrane containing 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane[J]. Arabian Journal of Chemistry, 2011, 9:S490-S496. [5] CHOI S Y, PARK K Y, YU Y, et al. Electrodialysis of groundwater with heavy metal and nitrate ions under low conductivity and effects of superficial velocities[J]. Desalination and Water Treatment, 2016, 57(55):26741-26750. [6] XIAO M, HU J. Cellulose/chitosan composites prepared in ethylene diamine/potassium thiocyanate for adsorption of heavy metal ions[J]. Cellulose, 2017, 24(6):2545-2557. [7] ZHU W J, WANG J X, WU D T, et al. Investigating the heavy metal adsorption of mesoporous silica materials prepared by microwave synthesis[J]. Nanoscale Research Letters, 2017, 12(1):323. [8] LIN S, XU M, ZHANG W, et al. Quantitative effects of amination degree on the magnetic iron oxide nanoparticles (MIONPs) using as adsorbents to remove aqueous heavy metal ions[J]. Journal of Hazardous Materials, 2017, 335(5):47-55. [9] WEBER W J. Physicochemical processes for water quality control[M]. New York:Wiley Interscience, 1972. [10] FEBRIANTO J, KOSASIH A N, SUNARSO J, et al. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent:a summary of recent studies[J]. Journal of Hazardous Materials, 2009, 162(2/3):616-645. [11] SITE A D. Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review[J]. Journal of Physical & Chemical Reference Data, 2001, 30(1):187-439. [12] DA'NA E, SAYARI A. Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation:equilibrium properties[J]. Chemical Engineering Journal, 2011, 166(1):445-453. [13] PIRILÄ M, CRUZ G J F, AINASSAARI K, et al. Adsorption of As(Ⅴ), Cd(Ⅱ) and Pb(Ⅱ), in multicomponent aqueous systems using activated carbons[J]. Water Environment Research, 2017, 89(9):846-855. [14] ZANIN E, SCAPINELLO J, OLIVEIRI M D, et al. Adsorption of heavy metals from wastewater graphic industry using clinoptilolite zeolite as adsorbent[J]. Process Safety & Environmental Protection, 2017, 105:194-200. [15] 杨林,吴平霄,刘帅,等. 两性修饰蒙脱石对水中镉和四环素的吸附性能研究[J]. 环境科学学报, 2016(6):2033-2042. YANG L, WU P X, LIU S, et al. Adsorption of Cd(Ⅱ) and tetracycline by amphoteric surfactants modified montmorillonite[J]. Journal of Environmental Sciences, 2016(6):2033-2042. [16] 程亮,侯翠红,徐丽,等. 纳米腐殖酸基离子交换复合树脂动态吸附-脱附冶金镍镉废水[J]. 化工学报, 2016, 67(1):349-357. CHENG L, HOU C P, XU L, et al. Dynamic adsorption-desorption of nickel or cadmium from metallurgical wastewater by nanoscale humic acid based ion exchange composite resin[J]. CIESC Journal, 2016, 67(1):349-357. [17] SOOKSAWAT N, MEETAM M, KRUATRACHUE M, et al. Performance of packed bed column using Chara aculeolata biomass for removal of Pb and Cd ions from wastewater[J]. Journal of Environmental Science and Health, Part A, 2017, 52(6):539-546. [18] 郝硕硕,朱家亮,黄慧,等. 改性沸石对Cd(Ⅱ)的吸附平衡及动力学[J]. 环境工程学报, 2012, 6(8):2693-2697. HAO Shuoshuo, ZHU Jialiang, HUANG Hui, et al. Cd(Ⅱ) adsorption equilibrium and kinetics by modified zeolites[J]. Chinese Journal of Environmental Engineering, 2012, 6(8):2693-2697. [19] YAO A, WANG Y, LING X, et al. Effects of an iron-silicon material, a synthetic zeolite and an alkaline clay on vegetable uptake of As and Cd from a polluted agricultural soil and proposed remediation mechanisms[J]. Environmental Geochemistry & Health, 2017, 39(2):353-367. [20] WIGHT A P, DAVIS M E. Design and preparation of organic-inorganic hybrid catalysts[J]. Chemical Reviews, 2002, 102(10):3589-3614. [21] TANG F, LI L, CHEN D. Mesoporous silica nanoparticles:synthesis, biocompatibility and drug delivery[J]. Advanced Materials, 2012, 24(12):1504-1534. [22] HOSHIKAWA Y, YAHE H, NOMURA A, et al. Mesoporous silica nanoparticles with remarkable stability and dispersibility for antireflective coatings[J]. Chemistry of Materials, 2009, 22(1):12-14. [23] LI Y, LI B, YAN Z, et al. Preparation of chiral mesoporous silica nanotubes and nanoribbons using a dual-templating approach[J]. Chemistry of Materials, 2013, 25(3):307-312. [24] VALTCHEV V, TOSHEVA L. Porous nanosized particles:preparation, properties, and applications[J]. Chemical Reviews,2013, 113(8):6734-6760. [25] SHI Y T, CHENG H Y, GENG Y, et al. The size-controllable synthesis of nanometer-sized mesoporous silica in extremely dilute surfactant solution[J]. Materials Chemistry and Physics, 2010, 120(1):193-198. [26] TREWYN B G, SLOWING I I, GIRI S, et al. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release[J]. Accounts of Chemical Research, 2007, 40(9):846-853. [27] JAL P K, PATEL S, MISHRA B K. Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions[J]. Talanta, 2004, 62(5):1005-1028. [28] GALARNEAU A, CAMBON H, DI RENZO F, et al. Microporosity and connections between pores in SBA-15 mesostructured silicas as a function of the temperature of synthesis[J]. New Journal of Chemistry, 2003, 27(1):73-79. [29] YOSHITAKE H, KOISO E, HORIE H, et al. Polyaminefunctionalized mesoporous silicas:preparation, structural analysis and oxyanion adsorption[J]. Microporous and Mesoporous Materials, 2005, 85(1):183-194. [30] HOFFMANN F, COMELIUS M, MORELL J, et al. Silica-based mesoporous organic-inorganic hybrid materials[J]. Angewandte Chemie International Edition, 2006, 45(20):3216-3251. [31] HUH S,WIENCH J W,YOO J C,et al. Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method[J]. Chemistry of Materials, 2003, 15(22):4247-4256. [32] YOSHITAKE H. Design of functionalization and structural analysis of organically-modified siliceous oxides with periodic structures for the development of sorbents for hazardous substances[J]. Journal of Materials Chemistry, 2010, 20(22):4537-4550. [33] YANTASEE W, RUTLEDGE R D, CHOUYYOK W, et al. Functionalized nanoporous silica for the removal of heavy metals from biological systems:adsorption and application[J]. ACS Applied Materials & Interfaces, 2010, 2(10):2749-2758. [34] SAKPAL T, KUMAR A, KAMBLE S P, et al. Carbon dioxide capture using amine functionalized silica gel[J]. Indian Journal of Chemistry, 2012, 51(9):1214-1222. [35] HEIDARI A, YOUNESI H, MEHRABAN Z. Removal of Ni (Ⅱ), Cd(Ⅱ), and Pb(Ⅱ) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica[J]. Chemical Engineering Journal, 2009, 153(1):70-79. [36] FAN H T, LI J, LI Z C, et al. An ion-imprinted amino-functionalized silica gel sorbent prepared by hydrothermal assisted surface imprinting technique for selective removal of cadmium (Ⅱ) from aqueous solution[J]. Applied Surface Science, 2012, 258(8):3815-3822. [37] YU Z H, ZHANG Y F, ZHAI S R, et al. Amino-modified mesoporous sorbents for efficient Cd(Ⅱ) adsorption prepared using non-chemical diatomite as precursor[J]. Journal of Sol-Gel Science and Technology, 2016, 78(1):110-119. [38] BOIS L, BONHOMME A, RIBES A, et al. Functionalized silica for heavy metal ions adsorption[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2003, 221(1):221-230. [39] KUSHWAHA A K, CHATTOPADYAY M C. Surface modification of silica gel for adsorptive removal of Ni2+ and Cd2+ from water[J]. Desalination and Water Treatment, 2015, 54(6):1642-1650. [40] DENIZ S, TASCI N, YETIMOGLU E K, et al. A new thiamine functionalized silica microparticules as a sorbent for removal of lead, mercury and cadmium ions in aqueous media[J]. Journal of the Serbian Chemical Society, 2016, 81:1-12. [41] ŠTANDEKER S, VERONOVSKI A, NOVAK Z, et al. Silica aerogels modified with mercapto functional groups used for Cu(Ⅱ) and Hg(Ⅱ) removal from aqueous solutions[J]. Desalination, 2011, 269(1):223-230. [42] FAGHIHIAN H, NOURMORA H, SHOKOUHI M. Performance of silica aerogels modified with amino functional groups in Pb(Ⅱ) and Cd(Ⅱ) removal from aqueous solutions[J]. Polish Journal of Chemical Technology, 2012, 14(1):50-56. [43] DE OLIVEIRA JORGETTO A, PEREIRA S P, DA SILVA R I V, et al. Application of mesoporous SBA-15 silica functionalized with 4-amino-2-mercaptopyrimidine for the adsorption of Cu(Ⅱ), Zn(Ⅱ), Cd(Ⅱ), Ni(Ⅱ) and Pb (Ⅱ) from water[J]. Acta Chimica Slovenica, 2015, 62(1):111-121. [44] IMYIM A, THANACHARUPHAMORN C, SAITHONGDEE A, et al. Simultaneous removal of Ag(Ⅰ), Cd(Ⅱ), Cr(Ⅲ), Ni(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) from wastewater using humic acid-coated aminopropyl silica gel[J]. Desalination and Water Treatment, 2016, 57(37):17411-17420. [45] TOUBI Y, RADI S, BACQUET M. Synthesis of pyridin-3-yl-functionalized silica as a chelating sorbent for solid-phase adsorption of Hg(Ⅱ), Pb(Ⅱ), Zn(Ⅱ), and Cd(Ⅱ) from water[J]. Research on Chemical Intermediates, 2013, 39(8):3791-3802. [46] FAN H T, WU J B, FAN X L, et al. Removal of cadmium(Ⅱ) and lead(Ⅱ) from aqueous solution using sulfur-functionalized silica prepared by hydrothermal-assisted grafting method[J]. Chemical Engineering Journal, 2012, 198:355-363. [47] SHOWKAT A M, ZHANG Y, KIM M S, et al. Analysis of heavy metal toxic ions by adsorption onto amino-functionalized ordered mesoporous silica[J]. Bulletin-Korean Chemical Society, 2007, 28(11):1985-1992. [48] BOTELLA P, COMA A, NAVARRO M T, et al. Design of optically active nanoclusters of gold particles with mesostructured silica coating[J]. Journal of Materials Chemistry, 2009, 19(20):3168-3175. [49] EL-TONI A M, HABILA M A, IBRAHIM M A, et al. Simple and facile synthesis of amino functionalized hollow core-mesoporous shell silica spheres using anionic surfactant for Pb(Ⅱ), Cd(Ⅱ) and Zn(Ⅱ) adsorption and recovery[J]. Chemical Engineering Journal, 2014, 251:441-451. [50] ZHU Z. Preparation and characterization of functionalized silica spheres for removal of Cu(Ⅱ), Pb(Ⅱ), Cr(Ⅵ) and Cd(Ⅱ) from aqueous solutions[J]. RSC Advances, 2015, 5(36):28624-28632. [51] TANG Y, LIANG S, WANG J, et al. Amino-functionalized core-shell magnetic mesoporous composite microspheres for Pb(Ⅱ) and Cd(Ⅱ) removal[J]. Journal of Environmental Sciences, 2013, 25(4):830-837. [52] ABEDI M, SALMANI M H, MOZAFFARI S A. Adsorption of Cd ions from aqueous solutions by iron modified pomegranate peel carbons:kinetic and thermodynamic studies[J]. International Journal of Environmental Science and Technology, 2016, 13(8):2045-2056. [53] LI J, CHEN C, ZHU K, et al. Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(Ⅱ) removal[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59:389-394. [54] UGRINA M, MEDVIDOVIC N V, PERIC J, et al. A study of kinetics and successive sorption/desorption of Zn and Cd uptake onto iron-modified zeolite[J]. Clay Minerals, 2015, 50(1):117-132. [55] KOHN T, LIVI K J T, ROBERTS A L, et al. Longevity of granular iron in groundwater treatment processes:corrosion product development[J]. Environmental Science & Technology, 2005, 39(8):2867-2879. [56] ANBIA M, GHASSEMIAN Z. Removal of Cd(Ⅱ) and Cu(Ⅱ) from aqueous solutions using mesoporous silicate containing zirconium and iron[J]. Chemical Engineering Research and Design, 2011, 89(12):2770-2775. [57] 方璐希,喻鹏,刘灿明,等. 铝钛改性MCM-41材料对污水中铅镉的吸附研究[J]. 环境科学与技术, 2012, 35(5):136-140. FANG L X, YU P,LIU C M, et al. The study of the adsorption of lead and cadmium in wastewater by MCM-41 materials modified by aluminum and titanium[J]. Environmental Science and Technology, 2012, 35(5):136-140. [58] CHEN J, FANG K, WU L, et al. Removal of Cd(Ⅱ) from aqueous by adsorption onto mesoporous Ti-MCM-48[J]. Procedia Environmental Sciences, 2011, 10:2491-2497. [59] JAZI M B, ARSHADI M, AMIRI M J, et al. Kinetic and thermodynamic investigations of Pb(Ⅱ) and Cd(Ⅱ) adsorption on nanoscale organo-functionalized SiO2-Al2O3[J]. Journal of Colloid and Interface Science, 2014, 422:16-24. [60] ALOTJMAN Z A, APBLETT A W. Metal ion adsorption using polyamine-functionalized mesoporous materials prepared from bromopropyl-functionalized mesoporous silica[J]. Journal of Hazardous Materials, 2010, 182(1):581-590. [61] ALOTHMAN Z A, APBLETT A W. Metal ion adsorption using polyamine-functionalized mesoporous materials prepared from bromopropyl-functionalized mesoporous silica[J]. Journal of Hazardous Materials, 2010, 182(1):581-590. [62] SINGH V,PANDEY S,SINGH S K,et al. Removal of cadmium from aqueous solutions by adsorption using poly(acrylamide) modified guar gum-silica nanocomposites[J]. Separation and Purification Technology, 2009, 67(3):251-261. [63] SNOUSSI Y, ABDERRABBA M, SAYARI A. Removal of cadmium from aqueous solutions by adsorption onto polyethyleniminefunctionalized mesocellular silica foam:equilibrium properties[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 66:372-378. [64] QU R, NIU Y, SUN C, et al. Syntheses, characterization, and adsorption properties for metal ions of silica-gel functionalized by ester-and amino-terminated dendrimer-like polyamidoamine polymer[J]. Microporous and Mesoporous Materials, 2006, 97(1):58-65. [65] FAN H T, LI J, LI Z C, et al. An ion-imprinted amino-functionalized silica gel sorbent prepared by hydrothermal assisted surface imprinting technique for selective removal of cadmium (Ⅱ) from aqueous solution[J]. Applied Surface Science, 2012, 258(8):3815-3822. [66] LI W, HE R, TAN L, et al. One-step synthesis of periodic ion imprinted mesoporous silica particles for highly specific removal of Cd2+ from mine wastewater[J]. Journal of Sol-Gel Science and Technology, 2016, 78(3):632-640. [67] AGUADO J, ARSUAGA J M, ARENCIBIA A, et al. Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica[J]. Journal of Hazardous Materials, 2009, 163(1):213-221. [68] VASILIEV A N, GOLOVKO L V, TRACHEVSKY V V, et al. Adsorption of heavy metal cations by organic ligands grafted on porous materials[J]. Microporous and Mesoporous Materials, 2009, 118(1):251-257. [69] SHAHBAZI A, YOUNESI H, BADIEI A. Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) heavy metal ions in batch and fixed bed column[J]. Chemical Engineering Journal, 2011, 168(2):505-518. [70] SHAHBAZI A, YOUNESI H, BADIEI A. Batch and fixed-bed column adsorption of Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution onto functionalised SBA-15 mesoporous silica[J]. The Canadian Journal of Chemical Engineering, 2013, 91(4):739-750. [71] CHEN Y, GAO J, WEN X, et al. Efficient removal of cadmium using facile functionalized of mesoporous silica via a biomimetic coating[J]. RSC Advances, 2016, 6(22):18340-18347. [72] ARKAS M, TSIOURVAS D, PALEOS C M. Organosilicon dendritic networks in porous ceramics for water purification[J]. Chemistry of Materials, 2005, 17(13):3439-3444. [73] WANG Y L, LIANG S, CHEN B D, et al. Synergistic removal of Pb(Ⅱ), Cd(Ⅱ) and humic acid by Fe3O4@mesoporous silica-graphene oxide composites[J]. PLoS One, 2013, 8(6):e65634. [74] LOPEZ-SOTELO J B, QUINA M J, GANDO-FERREIRA L, et al. Compost from poultry hatchery waste as a biosorbent for removal of Cd(Ⅱ) and Pb(Ⅱ) from aqueous solutions[J]. Canadian Journal of Chemical Engineering, 2017, 95(5):839-848. [75] 张延霖,张秋云,王婷. 改性淀粉在低浓度含镉废水处理中的应用实验[J]. 化工学报, 2009, 60(2):460-464. ZHANG Y L, ZHANG Q Y, WANG T. Removal of cadmium ions from low concentration wastewater containing cadmium by modified starch[J]. Journal of Chemical Industry and Engineering, 2009, 60(2):460-464. [76] LY H T Y, NGUYEN S V. Modified chitosan flakes with glutaraldehyde and citric acid as a potential biosorbent for adsorption of Cd(Ⅱ) from aqueous solution[C]//International Conference on Green Technology and Sustainable Development. IEEE Computer Society, 2016:244-250. [77] 田明威. 改性生物质半焦对模拟镉污染土壤修复的实验研究[D]. 武汉:华中科技大学, 2014. TIAN M W. Experimental study on the remediation of simulative cadmium contaminated soils by activated bochar[D]. Wuhan:Huazhong University of Science and Technology, 2014. [78] SHIM J, LIM J M, SHEA P J, et al. Simultaneous removal of phenol, Cu and Cd from water with corn cob silica-alginate beads[J]. Journal of Hazardous Materials, 2014, 272:129-136. [79] IMYIM A, THANACHARUPHAMORN C, SAITHONGDEE A, et al. Simultaneous removal of Ag(Ⅰ), Cd(Ⅱ), Cr(Ⅲ), Ni(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) from wastewater using humic acid-coated aminopropyl silica gel[J]. Desalination & Water Treatment, 2016, 57(37):17411-17420. [80] ZAREI M, SHAHPIRI A, ESMAEILNEJAD-AHRANJANI P, et al. Metallothionein-immobilized silica-coated magnetic particles as a novel nanobiohybrid adsorbent for highly efficient removal of cadmium from aqueous solutions[J]. RSC Advances, 2016, 6(52):46785-46793. [81] AHMARUZZAMAN M. A review on the utilization of fly ash[J]. Progress in Energy and Combustion Science, 2010, 36(3):327-363. [82] 陈彦广,陆佳,韩洪晶,等. 粉煤灰作为廉价吸附剂控制污染物排放的研究进展[J]. 化工进展, 2013, 32(8):1905-1913. CHEN Y G, LU J, HAN H J, et al. Research development of controlling air pollutions using fly ash as a low cost adsorbent[J]. Chemical Industry and Engineering Progress, 2013, 32(8):1905-1913. [83] 伍昌年,凌琪,唐玉朝,等. 微波辅助酸改性粉煤灰对镉的吸附性能研究[J]. 应用化工, 2016, 45(8):1428-1430. WU C N, LING Q, TANG Y C, et al. Study on the adsorption performance of cadmium with microwave-assisted acid modified fly ash[J]. Applied Chemical Industry, 2016, 45(8):1428-1430. [84] QI G, LEI X, LI L, et al. Coal fly ash-derived mesoporous calcium-silicate material(MCSM) for the efficient removal of Cd(Ⅱ), Cr(Ⅲ), Ni(Ⅱ) and Pb(Ⅱ) from acidic solutions[J]. Procedia Environmental Sciences, 2016, 31:567-576. [85] SOCO E, KALEMBKIEWICZ J. Comparison of adsorption of Cd(Ⅱ) and Pb(Ⅱ) ions on pure and chemically modified fly ashes[J]. Chemical and Process Engineering, 2016, 37(2):215-234. [86] YAO Z T, XIA M S, YE Y, et al. Synthesis of zeolite Li-ABW from fly ash by fusion method[J]. Journal of Hazardous Materials, 2009, 170(2):639-644. [87] DE C IZIDORO J, FUNGARO D A, DOS SANTOS F S, et al. Characteristics of Brazilian coal fly ashes and their synthesized zeolites[J]. Fuel Processing Technology, 2012, 97:38-44. [88] 陈彦广,徐婷婷,韩洪晶,等. 粉煤灰微波-水热合成法制备分子筛的研究进展[J]. 化工进展, 2015, 34(8):2916-2924. CHEN Y G, XU T T, HAN H J, et al. Research development of zeolites preparation from coal fly ash by microwave-hydrothermal synthesis[J]. Chemical Industry and Engineering Progress, 2015, 34(8):2916-2924. [89] 石德智, 张金露, 张超, 等. 粉煤灰水热法合成沸石的研究进展[J]. 安全与环境学报, 2016, 16(3):273-279. SHI D Z, ZHANG J L, ZHANG C, et al. On the research advances in hydrothermal synthesis of zeolite from the coal fly ash[J]. Journal of Safety and Environment, 2016, 16(3):273-279. [90] BEHIN J, BUKHARI S S, DEHNAVI V, et al. Using coal fly ash and wastewater for microwave synthesis of LTA zeolite[J]. Chemical Engineering & Technology, 2015, 37(9):1532-1540. [91] JAVADIAN H, GHORBANI F, TAYEBI H, et al. Study of the adsorption of Cd(Ⅱ) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies[J]. Arabian Journal of Chemistry, 2015, 8(6):837-849. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[9] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[10] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[11] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[12] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[13] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[14] | 张雪伟, 黄亚继, 许月阳, 程好强, 朱志成, 李金壘, 丁雪宇, 王圣, 张荣初. 碱性吸附剂对燃煤烟气中SO3的吸附特性[J]. 化工进展, 2023, 42(7): 3855-3864. |
[15] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |