[1] 杨加强,梅毅,王驰,等. 湿法烟气脱硝技术现状及发展[J]. 化工进展, 2017, 36(2):695-704. YANG J Q, MEI Y, WANG C, et al. Current status and trends on wet flue gas denitration technology[J]. Chemical Industry and Engineering Progress, 2017, 36(2):695-704.
[2] 王鲁元,程星星,王志强,等. 低温催化脱硝技术的研究进展[J]. 化工进展, 2016, 35(7):2222-2235. WANG L Y, CHENG X X, WANG Z Q, et al. Recent research progress in catalytic reduction of NOx at low temperature[J]. Chemical Industry and Engineering Progress, 2016, 35(7):2222-2235.
[3] 苑鹏,卢凤菊,梅雪,等. 高级氧化法在烟气脱硫脱硝脱汞中的应用研究进展[J]. 化工进展, 2016, 35(10):3313-3322. YUAN P, LU F J, MEI X, et al. Recent progress on application of advanced oxidation processes(AOPs) to remove SO2, NOx and Hg0 from flue gas[J]. Chemical Industry and Engineering Progress, 2016, 35(10):3313-3322.
[4] 中华人民共和国环保部. 2014年环境统计年报[R]. 北京, 2014. Ministry of environmental protection of the People's Republic of China. 2014 annual report on environmental statistics[R]. Beijing, 2014.
[5] 中华人民共和国环保部. 2013年环境统计年报[R]. 北京, 2013. Ministry of environmental protection of the People's Republic of China. 2013 annual report on environmental statistics[R]. Beijing, 2013.
[6] 中华人民共和国环保部. 2012年环境统计年报[R]. 北京, 2012. Ministry of environmental protection of the People's Republic of China. 2012 annual report on environmental statistics[R]. Beijing, 2012.
[7] 中华人民共和国环保部. 2011年环境统计年报[R]. 北京, 2011. Ministry of Environmental Protection of the People's Republic of China. 2011 annual report on environmental statistics[R]. Beijing, 2011.
[8] 顾卫荣,周明吉,马薇. 燃煤烟气脱硝技术的研究进展[J]. 化工进展, 2012, 31(9):2084-2092. GU W R, ZHOU M J, MA W. Technology status and analysis on coal-fired flue gas denitrification[J]. Chemical Industry and Engineering Progress, 2012, 31(9):2084-2092.
[9] 明磊凌. 亚铁络合吸收湿法脱硫脱硝试验研究[D]. 哈尔滨:哈尔滨工业大学, 2010. MING L L. Study on absorption of NO and SO2 in iron (Ⅱ) solutions[D]. Harbin:Harbin Institute of Technology, 2010.
[10] 王莉. FeⅡEDTA湿法络合脱硝液的再生及资源化初探[D]. 杭州:浙江大学, 2007. WANG L. Absorption, regeneration, resource reuse and harmless utilization of absorbent in FeⅡEDTA absorption of nitric oxide in flue gas[D]. Hangzhou:Zhejiang University, 2007.
[11] HE F Q, DENG X H, CHEN M. Kinetics of FeⅢEDTA complex reduction with iron powder under aerobic conditions[J]. RSC Advances, 2016, 6(44):38416-38423.
[12] SADA E, KUMAZAWA H, KUDO I, et al. Individual and simultaneous absorption of dilute NO and SO2 in aqueous slurries of MgSO3 with FeⅡ-EDTA[J]. Industrial & Engineering Chemistry Process Design and Development, 1980, 19(3):377-382.
[13] YAN B, YANG J, GUO M, et al. Study on NO enhanced absorption using FeⅡEDTA in (NH4)2SO3 solution[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4):2528-2534.
[14] KLEIFGES K H, JUZELIūNAS E, JÜTTNER K. Electrochemical study of direct and indirect NO reduction with complexing agents and redox mediator[J]. Electrochimica Acta, 1997, 42:2947-2953.
[15] SUCHECKI T T, MATHEWS B, KUMAZAWA H. Kinetic study of ambient-temperature reduction of FeⅢ EDTA by Na2S2O4[J]. Industrial & Engineering Chemistry Research, 2005, 44(12):4249-4253.
[16] LIMTRAKUL S, ROJANAMATIN S, VATANATHAM T, et al. Gas-lift reactor for hydrogen sulfide removal[J]. Industrial & Engineering Chemistry Research, 2005, 44(16):6115-6122.
[17] WANG X, ZHANG Y, DONG X, et al. Fe(Ⅱ)EDTA-NO reduction by sulfide in the anaerobic aqueous phase:stoichiometry and kinetics[J]. Energy & Fuels, 2013, 27(10):6024-6030.
[18] ADEWUYI Y G, SAKYI N Y. Simultaneous absorption and oxidation of nitric oxide and sulfur dioxide by aqueous solutions of sodium persulfate activated by temperature[J]. Industrial & Engineering Chemistry Research, 2013, 52(33):11702-11711.
[19] ADEWUYI Y G, SAKYI N Y. Removal of nitric oxide by aqueous sodium persulfate simultaneously activated by temperature and Fe2+ in a lab-scale bubble reactor[J]. Industrial & Engineering Chemistry Research, 2013, 52(41):14687-14697.
[20] AHMAD M, TEEL A L, FURMAN O S, et al. Oxidative and reductive pathways in iron-ethylenediaminetetraacetic acid-activated persulfate systems[J]. Journal of Environmental Engineering, 2012, 138(4):411-418.
[21] ADEWUYI Y G, KHAN M A. Nitric oxide removal by combined persulfate and ferrous-EDTA reaction systems[J]. Chemical Engineering Journal, 2015, 281:575-587.
[22] ADEWUYI Y G, KHAN M A. Nitric oxide removal from flue gas by combined persulfate and ferrous-EDTA solutions:effects of persulfate and EDTA concentrations, temperature, pH and SO2[J]. Chemical Engineering Journal, 2016, 304:793-807.
[23] DEMMINK J F, GILS I C F V, BEENACKERS A A C M. Absorption of nitric oxide into aqueous solutions of ferrous chelates accompanied by instantaneous reaction[J]. Industrial & Engineering Chemistry Research, 1997, 36(11):4914-4927.
[24] SUCHECKI T T, MATHEWS B, AUGUSTYNIAK A W, et al. Applied kinetics aspects of ferric EDTA complex reduction with metal powder[J]. Industrial & Engineering Chemistry Research, 2014, 53(37):14234-14240.
[25] HE F Q, DENG X H, CHEN M. Mechanism and kinetics of Fe(Ⅱ)EDTA-NO reduction by iron powder under anaerobic condition[J]. Fuel, 2016, 186:605-612.
[26] HE F Q, DENG X H, CHEN M. Evaluation of Fe(Ⅱ) EDTA-NO reduction by zinc powder in wet flue gas denitrification technology with Fe(Ⅱ) EDTA[J]. Fuel, 2017, 199:523-531.
[27] HE F Q, DENG X H, CHEN M. Nitric oxide removal by combined urea and FeⅡEDTA reaction systems[J]. Chemosphere, 2017, 168:623-629.
[28] MENDELSOHN M H, HARKNESS J B L. Enhanced flue-gas denitrification using ferrous EDTA and a polyphenolic compound in an aqueous scrubber system[J]. Energy & Fuels,1991,5(2):244-248.
[29] STÜBER F, FONT J, FORTUNY A, et al. Carbon materials and catalytic wet air oxidation of organic pollutants in wastewater[J]. Topics in Catalysis, 2005, 33(1):3-50.
[30] MAHMOOD H, MONIRUZZAMAN M, YUSUP S. Synthesis of ionic liquid polymer incorporating activated carbon for carbon dioxide capture and separation[J]. Advanced Materials Research, 2016, 1133:566-570.
[31] NAYAK A, BHUSHAN B, GUPTA V, et al. Chemically activated carbon from lignocellulosic wastes for heavy metal wastewater remediation:Effect of activation conditions[J]. Journal of Colloid and Interface Science, 2017, 493:228-240.
[32] YANG X, YANG L, DONG L, et al. Kinetics of the[Fe(Ⅲ)-EDTA]-reduction by sulfite under the catalysis of activated carbon[J]. Energy & Fuels, 2015, 25(10):4248-4255.
[33] 杨林. Fe(Ⅲ)EDTA催化还原中活性炭改性的研究[D]. 上海:华东理工大学, 2012. YANG L. Studies on the catalytic performance of modified aetivated carbon in the regeneration of Fe(Ⅱ) EDTA solution[D]. Shanghai:East China University of Science and Technology, 2012.
[34] LONG X L, YANG L, CHOU X, et al. Reduction of[Fe(Ⅲ)EDTA]- catalyzed by activated carbon modified with ammonia solution[J]. Journal of Industrial & Engineering Chemistry, 2014, 33(1):784-790.
[35] YANG X, ZHU H, YANG L, et al. A study on the reduction of[Fe(Ⅲ)- EDTA]-catalyzed with activated carbon in a fixed-bed[J]. Environmental Progress & Sustainable Energy, 2013, 32(2):206-212.
[36] XIANG K, HUI L, YANG B, et al. Selenium catalyzed Fe(Ⅲ)-EDTA reduction by Na2SO3:a reaction-controlled phase transfer catalysis[J]. Environmental Science and Pollution Research, 2016, 23(8):8113-8119.
[37] ZHANG S H, LI W, WU C Z, et al. Reduction of Fe(Ⅱ) EDTA-NO by a newly isolated Pseudomonas sp. strain DN-2 in NOx scrubber solution[J]. Applied Microbiology and Biotechnology, 2007, 76(5):1181-1187.
[38] DONG X, ZHANG Y, ZHOU J, et al. Fe(Ⅱ) EDTA-NO reduction coupled with Fe(Ⅱ) EDTA oxidation by a nitrate-and Fe(Ⅲ)-reducing bacterium[J]. Bioresource Technology, 2013, 138:339-344.
[39] LI N, ZHANG Y, LI Y, et al. Reduction of Fe(Ⅱ) EDTA-NO using Paracoccus denitrificans and changes of Fe(Ⅱ) EDTA in the system[J]. Journal of Chemical Technology and Biotechnology, 2013, 88(2):311-316.
[40] KUMARASWAMY R, VAN DONGEN U, KUENEN J G, et al. Characterization of microbial communities removing nitrogen oxides from flue gas:The bioDeNOx process[J]. Applied and Environmental Microbiology, 2005, 71(10):6345-6352.
[41] LI W, WU C Z, ZHANG S H, et al. Evaluation of microbial reduction of Fe(Ⅲ)EDTA in a chemical absorption-biological reduction integrated NOx removal system[J]. Environmental Science & Technology, 2007, 41(2):639-644.
[42] ZHOU Y, GAO L, XIA Y F, et al. Enhanced reduction of Fe(Ⅱ) EDTA-NO/Fe(Ⅲ)EDTA in NOx scrubber solution using a three-dimensional biofilm-electrode reactor[J]. Environmental Science & Technology, 2012, 46(22):12640-12647.
[43] DONG X, ZHANG Y, ZHOU J, et al. Evaluation of simultaneous reduction of Fe(Ⅱ) EDTA-NO and Fe(Ⅲ) EDTA by a bacterial pure culture[J]. Journal of Chemical Technology and Biotechnology, 2014, 89(1):111-116.
[44] XIA Y F, ZHAO J K, LI M F, et al. Bioelectrochemical reduction of Fe(Ⅱ)EDTA-NO in a biofilm electrode reactor:Performance, mechanism, and kinetics[J]. Environmental Science & Technology, 2016, 50(7):3846-3851. |