[1] LIU W, CHEN X, LI W, et al. Environmental assessment, management and utilization of red mud in China[J]. Journal of Cleaner Production, 2014, 84(1):606-610.
[2] 吴素彬,聂登攀,王振杰,等. 逆流浸取法回收赤泥中的碱[J]. 化工进展, 2014, 33(6):1607-1609. WU S B, NIE D P, WANG Z J, et al.Recycling alkali from red mud by counter current leaching[J]. Chemical Industry and Engineering Progress, 2014, 33(6):1607-1609.
[3] LIU D Y, WU C S. Stockpiling and comprehensive utilization of red mud research progress[J]. Materials, 2012, 5(7):1232-1246.
[4] MAYES W M, JARVIS A P, BURKE I T, et al. Dispersal and attenuation of trace contaminants downstream of the Ajka bauxite residue(red mud) depository failure, Hungary[J]. Environmental Science & Technology, 2011, 45(12):5147-5155.
[5] 刘少名. 赤泥的综合利用[D]. 沈阳:东北大学, 2011. LIU S M. Comprehensive utilization of red mud[D]. Shenyang:Northeastern University, 2011.
[6] 王强,翁雪鹤,潘登,等. 我国铝产业"十二五"总结暨"十三五"展望[J]. 冶金经济与管理, 2016(3):17-19. WANG Q, WANG X H, PAN D, et al. China's aluminum industry in the summary of "12th Five-Year" Plan and the prospect of "13th Five-Year" Plan[J]. Metallurgical Economics and Management, 2016(3):17-19
[7] PARAMGURU R K, RATH P C, MISRA V N. Trends in red mud utilization——a review[J]. Mineral Processing & Extractive Metallurgy Review, 2004, 26(1):1-29.
[8] SAMAL S, RAY A K, BANDOPADHYAY A. Proposal for resources, utilization and processes of red mud in India——a review[J]. International Journal of Mineral Processing, 2013, 118(1):43-55.
[9] 南相莉,张廷安,刘燕,等. 我国赤泥综合利用分析[J]. 过程工程学报, 2010, 10(s1):264-270. NAN X L, ZHANG T A, LIU Y, et al. Analysis of comprehensive utilization of red mud in China[J]. Chinese Journal of Process Engineering, 2010, 10:264-270.
[10] WANG Y, CHENG Y S, YU M G, et al. Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure[J]. Journal of Hazardous Materials, 2017, 335:84-91.
[11] SNARS K, GILKES R J. Evaluation of bauxite residues(red muds) of different origins for environmental applications[J]. Applied Clay Science, 2009, 46(1):13-20.
[12] SMIRNOV D I, MOLCHANOVA T V. The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production[J]. Hydrometallurgy, 1997, 45(3):249-259.
[13] 燕昭利,曹建亮,王燕,等. 拜耳法赤泥的催化应用研究现状分析[J]. 材料导报, 2013, 27(21):101-105. YAN Z L, CAO J L, WANG Y, et al. The overview of bayer process red mud for catalytic applications[J]. Materials Review, 2013, 27(21):101-105.
[14] 环境保护部办公厅. 关于征求《危险废物排除管理清单(征求意见稿)》意见的函[EB/OL]. http://www.zhb.gov.cn/gkml/hbb/bgth/201703/t20170324_408763.htm.
[15] 朱晓波,李望,管学茂,等. 拜耳法赤泥脱碱研究现状[J]. 硅酸盐通报, 2014(9):2254-2257. ZHU X B, LI W, GUAN X M, et al. Research status on dealkalization of the red mud by bayer process[J]. Bulletin of the Chinese Ceramic Society, 2014(9):2254-2257.
[16] 李建伟. 烧结法赤泥脱碱及碱回收工艺研究[D]. 郑州:郑州大学, 2012. LI J W. Study on alkali recovery and alkali removal of red mud by sintering process[D]. Zhengzhou:Zhengzhou University, 2012.
[17] 路晓涛,张志斌,郑洁,等. 国内赤泥脱碱工艺的研究进展[J]. 铝镁通讯, 2016(4):1-5. LU X T, ZHANG Z B,ZHENG J, et al. Research progress of alkali removal of red mud in China[J]. News Report about Aluminum and Magnesium, 2016(4):1-5.
[18] 朱晓波,李望,管学茂. 赤泥水浸脱碱实验及动力学研究[J]. 无机盐工业, 2016, 48(1):41-43. ZHU X B, LI W, GUAN X M. Experiment and kinetics of dealkalization with water leaching from red mud[J]. Inorganic Chemicals Industry, 2016, 48(1):41-43.
[19] LUO M, QI X, ZHANG Y, et al. Study on dealkalization and settling performance of red mud[J]. Environmental Science & Pollution Research, 2017, 24(2):1794-1802.
[20] LI R, ZHANG T, LIU Y, et al. Calcification-carbonation method for red mud processing[J]. Journal of Hazardous Materials, 2016, 316:94-101.
[21] WANG S, ANG H M, TADE M O. Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes.[J]. Chemosphere, 2008, 72(11):1621-1635.
[22] KUMAR S, KUMAR R, BANDOPADHYAY A. Innovative methodologies for the utilization of wastes from metallurgical and allied industries[J]. Resources Conservation & Recycling, 2006, 48(4):301-314.
[23] LIU Y, NAIDU R. Hidden values in bauxite residue(red mud):recovery of metals.[J]. Waste Management, 2014, 34(12):2662-2673.
[24] HAMMOND K, MISHRA B, APELIAN D, et al. CR3 communication:red mud-a resource or a waste?[J]. JOM, 2013, 65(3):340-341.
[25] XIANG Q F, LIANG X H, SCHLESINGER M E, et al. Low-temperature reduction of ferric iron in red mud[C]//Anjire, JL.130th TMS Annual Meeting. New Orleans, LA. Symp. Light Metals:Minerals, Metals & Materials Soc., 2001:157-162.
[26] LI Y, WANG J, WANG X, et al. Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation[J]. Physica C:Superconductivity and its Applications, 2011, 471(3):91-96.
[27] ZHU D Q, CHUN T J, PAN J, et al. Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt[J]. Journal of Iron and Steel Research, International, 2012, 19(8):1-5.
[28] PEPPER R A, COUPERTHWAITE S J, MILLAR G J. Comprehensive examination of acid leaching behaviour of mineral phases from red mud:recovery of Fe, Al, Ti, and Si[J]. Minerals Engineering, 2016, 99:8-18.
[29] KASLIWAL P, SAI P S T. Enrichment of titanium dioxide in red mud:a kinetic study[J]. Hydrometallurgy, 1999, 53(1):73-87.
[30] 姜平国,王鸿振. 从赤泥中浸出钛的研究[J]. 中国有色冶金, 2008(2):52-54. JIANG P G, WANG H Z. Study on titanium recovery from red mud[J]. China Nonferrous Metallurgy, 2008(2):52-54.
[31] 房辉, 郭年祥. 氧化铝固体废渣——赤泥的回收利用现状[J]. 中国资源综合利用, 2011, 29(9):21-24. FANG H, GUO N X. The current situation of recovery and utilization of red mud from alumina solid waste[J]. China Resources Comprehensive Utilization, 2011, 29(9):21-24.
[32] WANG W, PRANOLO Y, CHU Y C. Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA[J]. Separation & Purification Technology, 2013, 108(16):96-102.
[33] OCHSENKÜHN-PETROPULU M, LYBEROPULU Th, PARSSAKIS G. Selective separation and determination of scandium from yttrium and lanthanides in red mud by a combined ion exchange/solvent extraction method[J]. Analytica Chimica Acta, 1995, 315(1):231-237.
[34] BHATNAGAR A, VILAR V J, BOTELHO C M, et al. A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater[J]. Environmental Technology, 2011, 32(3):231-249.
[35] PRADHAN J, DAS J, DAS S, et al. Adsorption of phosphate from aqueous solution using activated red mud[J]. Journal of Colloid & Interface Science, 1998, 204(1):169-172.
[36] LIU Y, NAIDU R, MING H. Red mud as an amendment for pollutants in solid and liquid phases[J]. Geoderma, 2011, 163(1/2):1-12.
[37] ZHAO Y, ZHANG L Y, NI F, et al. Evaluation of a novel composite inorganic coagulant prepared by red mud for phosphate removal[J]. Desalination, 2011, 273(2):414-420.
[38] LIANG W, COUPERTHWAITE S J, KAUR G, et al. Effect of strong acids on red mud structural and fluoride adsorption properties[J]. Journal of Colloid & Interface Science, 2014, 423(3):158-165.
[39] CENGELOGLU Y, TOR A, ERSOZ M, et al. Removal of nitrate from aqueous solution by using red mud[J]. Separation & Purification Technology, 2006, 51(3):374-378.
[40] ALTUNDOGAN H S, ALTUNDOGAN S, TÜMEN F, et al. Arsenic adsorption from aqueous solutions by activated red mud[J]. Waste Management, 2002, 22(3):357-363.
[41] NADAROGLU H, KALKAN E, DEMIR N. Removal of copper from aqueous solution using red mud[J]. Desalination, 2010, 251(1/3):90-95.
[42] RUBINOS D A, BARRAL M T. Use of red mud(bauxite residue) for the retention of aqueous inorganic mercury(Ⅱ)[J]. Environmental Science and Pollution Research, 2015, 22(22):17550-17568.
[43] CUI Y W, LI J, DU Z F, et al. Cr(Ⅵ) Adsorption on red mud modified by lanthanum:performance, kinetics and mechanisms[J]. PLoS One, 2016, 11(9):e0161780.
[44] ZHY C, LUAN Z, WANG Y, et al. Removal of cadmium from aqueous solutions by adsorption on granular red mud(GRM)[J]. Separation & Purification Technology, 2007, 57(1):161-169.
[45] ZHANG L, ZHANG H, GUO W, et al. Removal of malachite green and crystal violet cationic dyes from aqueous solution using activated sintering process red mud[J]. Applied Clay Science, 2014, 93/94(5):85-93.
[46] SAPUTRA E, MUHAMMAD S, SUN H, et al. Red mud and fly ash supported Co catalysts for phenol oxidation[J]. Catalysis Today, 2012, 190(1):68-72.
[47] KUMAR R, SRIVASTAVA J P, PREMCHAND. Utilization of iron values of red mud for metallurgical applications[M]. Environmental and Waste Management, 1998:108-119.
[48] SAHU R C,PATEL R,RAY B C. Removal of hydrogen sulfide using red mud at ambient conditions[J]. Fuel Processing Technology, 2011, 92(8):1587-1592.
[49] JONES G, JOSHI G, CLARK M, et al. Carbon capture and the aluminium industry:preliminary studies[J]. Environmental Chemistry, 2006, 3(4):297-303.
[50] SAHU R C, PATAL R, RAY B C. Adsorption of Zn(Ⅱ) on activated red mud:neutralized by CO2[J]. Desalination, 2011, 266(1/3):93-97.
[51] ORDÓÑEZ S. Catalytic applications of red mud, an aluminum industry waste:a review[J]. Applied Catalysis B:Environmental, 2008, 81(1/2):64-77.
[52] HU Z P, ZHU Y P, GAO Z M, et al. CuO catalysts supported on activated red mud for efficient catalytic carbon monoxide oxidation[J]. Chemical Engineering Journal, 2016, 302:23-32.
[53] LIU X, ZHANG N. Utilization of red mud in cement production:a review[J]. Waste Management & Research, 2011, 29(10):1053-1063.
[54] LIU R X, POON C S. Effects of red mud on properties of self-compacting mortar[J]. Journal of Cleaner Production, 2016, 135:1170-1178.
[55] HE H, YUE Q, YUAN S, et al. Preparation and mechanism of the sintered bricks produced from Yellow River silt and red mud[J]. Journal of Hazardous Materials, 2012, s 203/204(4):53-61.
[56] SUMMERS R N, GUISE N R, SMIRK D D. Bauxite residue(red mud) increases phosphorus retention in sandy soil catchments in Western Australia[J]. Nutrient Cycling in Agroecosystems, 1993, 34(1):85-94.
[57] SUMMERS R N, PECH J D. Nutrient and metal content of water, sediment and soils amended with bauxite residue in the catchment of the Peel Inlet and Harvey Estuary, Western Australia.[J]. Agriculture Ecosystems & Environment, 1997, 64(3):219-232.
[58] LOMBI E, ZHAO F J, WIESHAMMER G, et al. In situ fixation of metals in soils using bauxite residue:biological effects[J]. Environmental Pollution, 2002, 118(3):445-452.
[59] GARAU G, SILVETTI M, DEIANA S, et al. Long-term influence of red mud on As mobility and soil physico-chemical and microbial parameters in a polluted sub-acidic soil.[J]. Journal of Hazardous Materials, 2011, 185(2/3):1241-1248.
[60] UYSAL B Z, AKSAHIN I, YUCEL H. Sorption of SO2 on metal oxides in a fluidized bed[J]. Industrial & Engineering Chemistry Research, 1988, 27(3):49-57.
[61] LAND G W. Trials of additives for sulfur dioxide removal in industrial plants[J]. Combustion, 1969(10):30-33.
[62] 王学谦. 硫化氢废气的燃烧-吸收法净化研究[D]. 昆明:昆明理工大学, 2001. WANG X Q. Study on the method of combustion-aborption in dealing with waste gas including hydrogen sulfide[D]. Kunming:Kunming University of Science and Technology, 2001.
[63] OLDAKER E C, POSTON A M, FARRIOR W L. Removal of hydrogen sulfide from hot low-Btu gas with iron oxide-fly ash sorbents.[HS removed from gas at 1100℉; 90-95 percent of HS removed] [R]. Morgantown:Morgantown Energy Technology Center, 1975.
[64] 邢同春. 关于干式氢氧化铁脱硫的分析[J]. 煤气与热力, 1990, 10(6):18-19. XING T C.Analysis on dry desulfurization of ferric hydroxide[J]. Gas and Heat, 1990, 10(6):18-19.
[65] WANG X K, ZHANG Y H, LV F Z, et al. Removal of alkali in the red mud by SO2 and simulated flue gas under mild conditions[J]. Environmental Progress & Sustainable Energy, 2015, 34(1):81-87.
[66] 陈海彩. 2600m3/h烟气脱硫装置设计及脱硝热力学研究[D]. 郑州:郑州大学, 2014. CHEN H C. Design of 2600m3/h flue gas desulfurization device and thermodynamics analysis of denitration[D]. Zhengzhou:Zhengzhou University, 2014.
[67] 位朋. 氧化铝赤泥工业烟气脱硫研究[D]. 郑州:郑州大学, 2012. WEI P.Research of industrial flue gas desulfurization by alumina red mud[D]. Zhengzhou:Zhengzhou University, 2012.
[68] 杨金姬. 赤泥用于工业烟气脱硫的实验研究[D]. 郑州:郑州大学, 2012. YANG J J. Experimental study of red mud for industrial flue gas desulfurization[D]. Zhengzhou:Zhengzhou University, 2012.
[69] 靳苏静. 赤泥与石灰石湿法烟气脱硫的工程运行分析[D]. 郑州:郑州大学, 2013. JIN S J.Engineering operation analysis of red mud and limestone wet flue gas desulfurization[D]. Zhengzhou:Zhengzhou University, 2013.
[70] 庞皓. 工业烟气赤泥脱硫中试装置的初步设计及设备选型[D]. 郑州:郑州大学, 2013. PANG H.Preliminary design and type selection of pilot test in industrial flue gas desulfurization by red mud[D]. Zhengzhou:Zhengzhou University, 2013.
[71] 杨国俊,于海燕,李威,等. 赤泥脱硫的工程化试验研究[J]. 轻金属, 2010(9):26-29. YANG G J, YU H Y, LI W, et al. Pilot-plant test of sulfur removal by red mud[J]. Light Metals, 2010(9):26-29.
[72] 胡学伟,姚琪,李彬,等. 一种利用赤泥处理烟气并回收金属铁、铝的方法:201610430324.8[P]. 2016-09-28. HU X W, YAO Q, LI B, et al. Method of using red mud for treating flue gas and recovering metal iron and aluminum:201610430324.8[P]. 2016-09-28.
[73] 张江娟,邓佐国,徐廷华. 赤泥酸浸的试验研究[J]. 轻金属, 2005(2):13-15. ZHANG J J, DENG Z G, XU Y H. Experimental investigation on leaching metals from red mud[J]. Light Metals, 2005(2):13-15.
[74] NIE Q, HU W, AI T, et al. Strength properties of geopolymers derived from original and desulfurized red mud cured at ambient temperature[J]. Construction & Building Materials, 2016, 125:905-911.
[75] MAN K, ZHU Q, LI L, et al. Preparation and performance of ceramic filter material by recovered silicon dioxide as major leached component from red mud[J]. Ceramics International, 2017,10(43):7565-7572. |