化工进展 ›› 2017, Vol. 36 ›› Issue (09): 3164-3176.DOI: 10.16085/j.issn.1000-6613.2017-0154
宋光春1, 李玉星1, 王武昌1, 姜凯1, 施政灼1, 赵鹏飞2
收稿日期:
2017-01-22
修回日期:
2017-03-01
出版日期:
2017-09-05
发布日期:
2017-09-05
通讯作者:
李玉星,博士,教授,主要从事油气储运工程方面的研究和教学工作。
作者简介:
宋光春(1992-),男,博士研究生,主要从事深水流动安全保障方向研究。E-mail:UpcNGH_sgc@163.com
基金资助:
SONG Guangchun1, LI Yuxing1, WANG Wuchang1, JIANG Kai1, SHI Zhengzhuo1, ZHAO Pengfei2
Received:
2017-01-22
Revised:
2017-03-01
Online:
2017-09-05
Published:
2017-09-05
摘要: 水合物在油气输送管线内的沉积是导致管线堵塞的重要原因。本文调研了国内外水合物沉积研究常用的实验装置,主要包括微机械力测量装置、摇晃式反应釜和不同规模的实验环路。利用上述装置的实验研究及相关计算流体力学模拟研究共同表明,水合物颗粒的管线着床、水合物的管壁膜生长和水合物颗粒的管壁黏附是油气输送管线内水合物沉积的3种主要机理。水合物浓度过高、水合物颗粒粒径过大及管内流速过低是水合物颗粒着床沉积的主要原因。管壁和流体间存在温度梯度且管壁处过冷度较大时,水分子或气体分子由流体内部向管壁处的扩散是引发水合物膜生长沉积的根本原因。水合物颗粒与管壁间的毛细液桥力和范德华力是粘附沉积产生的主要原因。针对3类沉积机理,分别介绍了其沉积特性及相关沉积模型。过冷度与水合物的沉积机理密切相关,因此可根据流体过冷度的大小对管线不同位置处的水合物沉积机理进行区分。沉积模型的完善及水合物沉积特性与流体流动特性间的耦合对油气流动安全保障具有非常重大的意义,是未来研究的重点。
中图分类号:
宋光春, 李玉星, 王武昌, 姜凯, 施政灼, 赵鹏飞. 油气输送管线水合物沉积研究进展[J]. 化工进展, 2017, 36(09): 3164-3176.
SONG Guangchun, LI Yuxing, WANG Wuchang, JIANG Kai, SHI Zhengzhuo, ZHAO Pengfei. A review on hydrate deposition in oil and gas transmission pipelines[J]. Chemical Industry and Engineering Progress, 2017, 36(09): 3164-3176.
[1] 李长俊,黄婷,贾文龙. 深水天然气水合物及其管道输送技术[J]. 科学通报,2016(22):2449-2462. LI C J, HUANG T, JIA W L. A review of natural gas hydrates and its pipeline transportation technologies in deep water[J]. China Academic Journal,2016(22):2449-2462. [2] SLOAN E D. Fundamental principles and applications of natural gas hydrates[J]. Nature,2003,426(6964):353-363. [3] 宋光春,李玉星,王武昌. 温度和压力对CO2置换甲烷水合物的影响[J]. 油气储运,2016,35(3):295-301. SONG G C,LI Y X,WANG W C. Impacts of temperature and pressure on displacement of CH4 in hydrate by CO2[J]. Oil & Gas Storage and Transportation,2016,35(3):295-301. [4] 陈光进,孙长宇,马庆兰. 气体水合物科学与技术[M]. 北京:化学工业出版社,2008:223-225. CHEN G J,SUN C Y,MA Q L. Gas hydrate science and technology[M]. Beijing:Chemical Industry Press,2008:223-225. [5] 丁麟,史博会,吕晓方,等. 天然气水合物的生成对浆液流动稳定性影响综述[J]. 化工进展,2016,35(10):3118-3128. DING L,SHI B H,LÜ X F,et al. Investigation on the effects of natural gas hydrate formation on slurry flow stability[J]. Chemical Industry and Engineering Progress,2016,35(10):3118-3128. [6] HAMMERSCHMIDT E G. Formation of gas hydrates in natural gas transmission lines[J]. Industrial and Engineering Chemistry,1934,26:851-855. [7] 宋光春,李玉星,王武昌,等. 油气管道水合物解堵工艺及存在问题[J]. 油气储运,2016,35(8):823-827. SONG G C,LI Y X,WANG W C,et al. Removal process of hydrate blockages in oil/gas pipelines and existing problems[J]. Oil & Gas Storage and Transportation,2016,35(8):823-827. [8] BASSANI C L,BARBUTO F A A,SUM A K,et al. Modeling the effects of hydrate wall deposition on slug flow hydrodynamics and heat transfer[J]. Applied Thermal Engineering,2017,114:245-254. [9] SONG G C,LI Y X,WANG W C,et al. Investigation of hydrate plugging in natural gas+diesel oil+water systems using a high-pressure flow loop[J]. Chemical Engineering Science,2017,158:480-489. [10] STRAUME E O,MORALES R E M,SUM A K. Cold flow-a review of methods and published results[C]//Proceedings of the 8th International Conference on Gas Hydrates,Beijing,China,2014. [11] LUND A,LYSNE D,LARSEN R,et al. Method and system for transporting a flow of fluid hydrocarbons containing water:US6774276[P]. 2004. [12] TURNER D,TALLEY L. Hydrate inhibition via cold flow-no chemicals or insulation[C]//Proceedings of the 6th International Conference on Gas Hydrates,Vancouver,British Columbia,Canada,2008. [13] HUO Z,FREER E,LAMAR M,et al. Hydrate plug prevention by anti-agglomeration[J]. Chemical Engineering Science,2001,56(17):4979-4991. [14] KELLAND M A. History of the development of low dosage hydrate inhibitors[J]. Energy & Fuels,2006,20(3):825-847. [15] VILLANO L D,KELLAND M A. An investigation into the laboratory method for the evaluation of the performance of kinetic hydrate inhibitors using superheated gas hydrates[J]. Chemical Engineering Science,2011,66(9):1973-1985. [16] ANKLAM M R,DALTON Y J,HELMERICH L,et al. Effects of antiagglomerants on the interactions between hydrate particles[J]. American Institute of Chemical Engineers,200,54(2):565-574. [17] CAMARGO R, PALERM T. Rheological properties of hydrate suspensions in an asphaltenic crude oil[C]//Proceedings of the 6th International Conference on Gas Hydrates,Yokohama, Japan,2002. [18] COLOMBEL E,GATEAU P,B L,et al. Discussion of agglomeration mechanisms between hydrate particles in water in oil emulsions[J]. Oil and Gas Science and Technology,2009,64(5):629-636. [19] DIEKER L E,AMAN Z M,GEORGE N C,et al. Micromechanical adhesion force measurements between hydrate particles in hydrocarbon oils and their modifications[J]. Energy Fuels,2009,23(12):5966-5971. [20] BO R L,KOH C A,SUM A K. Development of a high pressure micromechanical force apparatus[J]. Review of Scientific Instruments,2014,85(9):095120. [21] YANG S O,KLEEHAMMER D M,HUO Z,et al. Temperature dependence of particle-particle adherence forces in ice and clathrate hydrates[J]. Journal of Colloid & Interface Science,2004,277(277):335-341. [22] AMAN Z M. Interfacial phenomena of cyclopentane hydrate[D]. Golden:Colorado School of Mines,2012. [23] NICHOLAS J W,DIEKER L E,SLOAN E D,et al. Assessing the feasibility of hydrate deposition on pipeline walls-adhesion force measurements of clathrate hydrate particles on carbon steel[J]. Journal of Colloid & Interface Science,2009,331(2):322-328. [24] HASE A,CADGER S,MEIKLEJOHN T,et al. Comparison of different testing techniques for the evaluation of low dosage hydrate inhibitor performance[C]//Proceedings of the 8th International Conference on Gas Hydrates,Beijing,China,2014. [25] DARABOINA N,SOLMS N V. Experimental evaluation of kinetic inhibitors for natural gas hydrate formation in the presence of n-heptane[C]//Proceedings of the 8th International Conference on Gas Hydrates,Beijing,China,2014. [26] JARDINE J,LONGFIELD J,JACKSON S. Laboratory evaluation and performance comparison of kinetic hydrate inhibitors under sweet versus sour conditions[C]//Proceedings of the 8th International Conference on Gas Hydrates,Beijing,China,2014. [27] COOK S,GARZA T,JARDINE J,et al. Investigation of laboratory scale equipment for kinetic hydrate inhibitors evaluation[C]//Proceedings of the 8th International Conference on Gas Hydrates,Beijing,China,2014. [28] MADY M F,KELLAND M A. A novel non-ionic acrylamide monomer for raising the cloud point of kinetic hydrate inhibitor copolymers[C]//Proceedings of the 8th International Conference on Gas Hydrates,Beijing,China,2014. [29] REYES F T,LI G,HEDGEPETH J W,et al. First investigation of the kinetic hydrate inhibitor performance of poly(N-alkyl glycine)s[J]. Energy & Fuels,2014,28(11):6889-6896. [30] MADY M F,BAK J M,LEE H I,et al. The first kinetic hydrate inhibition investigation on fluorinated polymers:poly(fluoro alkyl acrylamide)s[J]. Chemical Engineering Science,2014,119(6):230-235. [31] MAGNUSSON C D,KELLAND M A. Study on the synergistic properties of quaternary phosphonium bromide salts with N-vinylcaprolactam based kinetic hydrate inhibitor polymers[J]. Energy & Fuels,2014,28(11):6803-6810. [32] STRAUME E O,MORALES R E M,SUM A K. Experimental study of the deposition of gas hydrates in a condensate dominated pipeline[C]//Proceedings of the 8th International Conference on Gas Hydrates,Beijing,China,2014. [33] GRASSO G A,SLOAN E D,KOH C,et al. Hydrate deposition mechanisms on pipe walls[C]//Offshore Technology Conference,OTC-25309-MS,Texas,USA,2014. [34] GRASSO G A,SLOAN E D,KOH C A,et al. Investigation of hydrate deposition mechanisms on surfaces[C]//Proceedings of the 8th International Conference on Gas Hydrates,Beijing,China,2014. [35] MONTEIEO D,ACOSTA E,WHITE J,et al. Natural gas hydrate management at high water cuts by using anti-agglomerant with THI supplementation[C]//Proceedings of the 8th International Conference on Gas Hydrates,Beijing,China,2014. [36] GRASSO G A. Investigation of hydrate formation and transportability in multiphase flow systems[D]. Golden:Colorado School of Mines,2015. [37] JOSHI S V,GRASSO G A,LAFOND P G,et al. Experimental flowloop investigations of gas hydrate formation in high water cut systems[J]. Chemical Engineering Science,2013,97(7):198-209. [38] AA-MAJID A,LEE W,SRIVASTAVA V,et al. The study of gas hydrate formation and particle transportability using a high pressure flowloop[C]//Offshore Technology Conference,OTC-27276-MS,Texas,USA,2016. [39] VIJAYAMOHAN P. Experimental investigation of gas hydrate formation, plugging and transportability in partially dispersed and water continuous systems[D]. Golden:Colorado School of Mines,2016. [40] ESTANGA D,WALSH M, SUBRAMANIAN S,et al. Natural gas hydrate deposition in liquid systems[C]//Proceedings of the 8th International Conference on Gas Hydrates,Beijing,China,2014. [41] URDAHL O,LUND A,MORK P,et al. Inhibition of gas hydrate formation by means of chemical additives-Ⅰ. Development of an experimental set-up for characterization of gas hydrate inhibitor efficiency with respect to flow properties and deposition[J]. Chemical Engineering Science,1995,50(5):863-870. [42] 宋承毅,杨学军. 多相混输管道水合物预测及控制动态试验研究[J]. 工程热物理学报,2007,28(s1):193-196. SONG C Y,YANG X J. Dynamic experiment on prediction and control over the hydrate in multiphase transmission pipelines[J]. Journal of Engineering Thermophysics,2007,28(s1):193-196. [43] GAINVILLE M,SINQUIN A,CASSAR C,et al. Large hydrate plug characterization and closed volume dissociation in a full scale electrically trace heating pipe in pipe[C]//North American Conference Multiphase,2016. [44] MELCHUNA A,CAMERIRAO A,OUABBAS Y,et al. Transport of hydrate slurry at high water cut[C]//Proceedings of the 8th International Conference on Gas Hydrates,Beijing,China,2014. [45] AMAN Z M,LORENZO M D,KOZIELSKI K,et al. Hydrate formation and deposition in a gas-dominant flowloop:Initial studies of the effect of velocity and sub-cooling[J]. Journal of Natural Gas Science & Engineering,2016,35:1490-1498. [46] LORENZO M D,AMAN Z M,SOTO G S,et al. Hydrate formation in gas-dominant systems using a single-pass flowloop[J]. Energy & Fuels,2014,28(5):3043-3052. [47] DING L,SHI B,LV X,et al. Investigation of natural gas hydrate slurry flow properties and flow patterns using a high pressure flow loop[J]. Chemical Engineering Science,2016,146:199-206. [48] 王树立,饶永超,周诗岽,等. 水合物法天然气管道输送的实验研究[J]. 天然气工业,2014,34(11):101-107. WANG S L,RAO Y C,ZHOU S D,et al. An experimental study on deepwater natural gas transmission based on the hydrate slurry flow technology[J]. Natural Gas Industry,2014,34(11):101-107. [49] 王蕾,王树立,李建敏,等. 流动体系水合物生成及其流动特性试验研究[J]. 石油机械,2015,43(7):111-115. WANG L,WANG S L,LI J M,et al. Experimental study on hydrate formation and flow characteristics in flow system[J]. China Petroleum Machinery,2015,43(7):111-115. [50] WANG W C,FAN S S,LIANG D Q,et al. Experimental study on flow characters of CH3CCl2F hydrate slurry[J]. International Journal of Refrigeration,2008,31:371-378. [51] BALAKIN B V,PEDERSEN H,KILINC Z,et al. Turbulent flow of freon R11 hydrate slurry[J]. Journal of Petroleum Science & Engineering,2010,70(3/4):177-182. [52] BALAKIN B V,HOFFMANN A C,KOSINSKI P. Experimental study and computational fluid dynamics modeling of deposition of hydrate particles in a pipeline with turbulent water flow[J]. Chemical Engineering Science,2011,66(4):755-765. [53] JASSIM E,ABDI M A,MUZYCHKA Y. A new approach to investigate hydrate deposition in gas-dominated flowlines[J]. Journal of Natural Gas Science & Engineering,2010,2(2):163-177. [54] 李文庆,于达,吴海浩,等. 高压水合物/蜡沉积实验环路的设计与建造[J]. 实验室研究与探索,2011,30(12):13-16. LI W Q,YU D,WU H H,et al. Design and construction of a high pressure experimental flow loop for hydrate/wax deposition[J]. Research and Exploration in Laboratory,2011,30(12):13-16. [55] GRASSO G A,LAFOND P G,AMAN Z A,et al. Hydrate formation flowloop experiments[C]//Proceedings of the 8th International Conference on Gas Hydrates,Beijing,China,2014. [56] HERNANDEZ O C. Investigation of hydrate slurry flow in horizontal pipelines[D]. Tulsa:University of Tulsa,2006. [57] YANNICK P,SVEN N,PHILIPPE M,et al. Flow of hydrates dispersed in production lines[C]//SPE Annual Technical Conference and Exhibition,5-8 October,Denver,Colorado,2003. [58] BALAKIN B V,HOFFMANN A C,KOSINSKI P,et al. Turbulent flow of hydrates in a pipeline of complex configuration[J]. Chemical Engineering Science,2010,65:5007-5017. [59] DORON P,SIMKHIS M,BARNEA D. Flow of solid-liquid mixtures in inclined pipes[J]. International Journal of Multiphase Flow,1997,23(2):313-323. [60] JOSHI S V. Experimental investigation and modeling of gas hydrate formation in high water cut producing oil pipelines[D]. Golden:Colorado School of Mines,2012. [61] CHEN J,YAN K L,CHEN G J,et al. Insights into the formation mechanism of hydrate plugging in pipelines[J]. Chemical Engineering Science,2015,122:284-290. [62] AMAN Z M,LORENZO M D,KOZIELSKI K,et al. Hydrate formation and deposition in a gas-dominant flowloop:initial studies of the effect of velocity and subcooling[J]. Journal of Natural Gas Science & Engineering,2016,35:1490-1498. [63] JASSIM E,ABDI M A,MUZYCHKA Y. A CFD-based model to locate flow-restriction induced hydrate deposition in pipelines[C]//Offshore Technology Conference,OTC-19190-MS,Texas,USA,2008. [64] BALAKIN B V,HOFFMANN A C,KOSINSKI P. Experimental study and computational fluid dynamics modeling of deposition of hydrate particles in a pipeline with turbulent water flow[J]. Chemical Engineering Science,2011,66(4):755-765. [65] 魏丁,王武昌,李玉星,等. 管道CCl3F水合物浆流动特性的数值模拟[J]. 油气储运,2016(8):828-832. WEI D,WANG W C,LI Y X,et al. Numerical simulation on flow behaviors of CCl3F hydrate slurry in pipelines[J]. Oil & Gas Storage and Transportation,2016(8):828-832. [66] BALAKIN B V,LO S,KOSINSKI P,et al. Modelling agglomeration and deposition of gas hydrates in industrial pipelines with combined CFD-PBM technique[J]. Chemical Engineering Science,2016,153:45-57. [67] 王武昌,陈鹏,李玉星,等. 天然气水合物浆在管道中的流动沉积特性[J]. 天然气工业,2014,34(2):99-104. WANG W C,CHEN P,LI Y X,et al. Flow and deposition characteristics of natural gas hydrate in pipelines[J]. Natural Gas Industry,2014,34(2):99-104. [68] DORON P,BARNEA D. Flow pattern maps for solid-liquid flow in pipes[J]. International Journal of Multiphase Flow,1996,22(2):273-283. [69] TAITERl Y,DUKLER A E. A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow[J]. AIChE Journal,1976,22(1):47-55. [70] WALLIS G B. One-dimensional two-phase flow[M]. New York:McGraw-Hill,1969:97-112. [71] RAO I,KOH C A,SLOAN E D,et al. Gas hydrate deposition on a cold surface in water-saturated gas systems[J]. Industrial & Engineering Chemistry Research,2013,52(18):6262-6269. [72] NICHOLAS J W. Hydrate deposition in water saturated liquid condensate pipelines[D]. Golden:Colorado School of Mines, 2008. [73] NICHOLAS J W,KOH C A,SLOAN E D. Measuring hydrate/ice deposition in a flow loop from dissolved water in live liquid condensate[J]. AIChE Journal,2009,55(7):1882-1888. [74] NICHOLAS J W,DIEKER L E,NUEBING L,et al. Experimental investigation of deposition and wall growth in water saturated hydrocarbon pipelines in the absence of free water[C]//Proceedings of the 6th International Conference on Gas Hydrates,Vancouver,British Columbia,Canada,2008. [75] NISHIYAMA T. Uphill diffusion and chemical layering in a mineral-fluid system[M]. Dynamics and Patterns in Complex Fluids. Heidelberg:Springer,1990:219-220. [76] LU Y,HUANG Z,HOFFMANN R,et al. Counterintuitive effects of the oil flow rate on wax deposition[J]. Energy & Fuels,2012,26(7):4091-4097. [77] KARANJKAR P U,AHUJA A,ZYLYFTARI G,et al. Rheology of cyclopentane hydrate slurry in a model oil-continuous emulsion[J]. Rheologica Acta,2016,55(3):235-243. [78] TAYLOR C J. Adhesion force between hydrate particles and macroscopic investigation of hydrate film growth at the hydrocarbon/water interface[D]. Golden:Colorado School of Mines,2006. [79] ASPENES G,DIEKER L E,AMAN Z M,et al. Adhesion force between cyclopentane hydrates and solid surface materials[J]. Journal of Colloid & Interface Science,2010,343(2):529-536. [80] AMAN Z M,LEITH W J,GRASSO G A,et al. Adhesion force between cyclopentane hydrate and mineral surfaces[J]. Langmuir,2013,29(50):15551-15557. [81] AMAN Z M,BROWN E P,SLOAN E D,et al. Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion[J]. Physical Chemistry Chemical Physics Pccp,2011,13(44):19796-19806. [82] FIDEL-DUFOUR A,GRUY F,HERRI J M. Rheology of methane hydrate slurries during their crystallization in a water in dodecane emulsion under flowing[J]. Chemical Engineering Science,2006,61(2):505-515. [83] 赵鹏飞,王武昌,李玉星. 流动体系下油基天然气水合物颗粒管壁粘附机制[J]. 油气储运,2016,35(5):482-487. ZHAO P F,WANG W C,LI Y X. Pipe wall adhesion mechanism of natural gas hydrate particles in oil-dominated flowlines[J]. Oil & Gas Storage and Transportation,2016,35(5):482-487. [84] BURDICK G M,BERMAN N S,BEAUDOIN S P. Describing hydrodynamic particle removal from surfaces using the particle Reynolds number[J]. Journal of Nanoparticle Research,2001,3(5/6):453-465. |
[1] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[2] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[3] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[4] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[5] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[6] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
[7] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[8] | 路思佳, 李晓良, 赵会艳, 田志娟, 郑兴. 电化学对循环冷却水系统碳钢的结垢与腐蚀影响[J]. 化工进展, 2023, 42(4): 2142-2150. |
[9] | 刘佳, 梁德青, 李君慧, 林德才, 吴思婷, 卢富勤. 油水体系水合物浆液流动保障研究进展[J]. 化工进展, 2023, 42(4): 1739-1759. |
[10] | 王唯, 张东旭, 李遵照, 王晓霖, 黄启玉. 油包水乳状液体系中水合物生长行为研究进展[J]. 化工进展, 2023, 42(3): 1155-1166. |
[11] | 赵王瑞, 刘燕, 张伟, 邓会宁. Fe3+诱导聚多巴胺-聚乙烯亚胺电沉积制备单价选择性膜[J]. 化工进展, 2023, 42(3): 1508-1514. |
[12] | 于海强, 郭泉忠, 杜克勤, 汪川. 脉冲电沉积PbO2涂层在PEMFC不锈钢双极板上的应用[J]. 化工进展, 2023, 42(2): 917-924. |
[13] | 康宇, 苟泽念. 氨基酸和DTAC对CO2水合分离动力学影响[J]. 化工进展, 2023, 42(10): 5067-5075. |
[14] | 岳子瀚, 龙臻, 周雪冰, 臧小亚, 梁德青. sⅡ型水合物储氢研究进展[J]. 化工进展, 2023, 42(10): 5121-5134. |
[15] | 王晓亮, 于振秋, 常雷明, 赵浩男, 宋晓琦, 高靖淞, 张一波, 黄传辉, 刘忆, 杨绍斌. 电沉积法制备氢氧化物/氧化物超级电容器电极的研究进展[J]. 化工进展, 2023, 42(10): 5272-5285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |