[1] ZHAO J,JIANG Y,YAN B,et al. Multispecies acute toxicity evaluation of wastewaters from different treatment stages in a coking wastewater-treatment plant[J]. Environmental Toxicology and Chemistry,2014,33(9):1967-1975.
[2] 韩涛,陈梓晟,林冲,等. 臭氧流化床深度处理焦化废水尾水过程中有机组分变化分析[J]. 环境科学学报,2016,36(1):149-155. HAN T,CHEN Z S,LIN C,et al. The analysis of organic composition in the advanced treatment of bio-treated coking effluent with ozone-fluidized bed[J]. Acta Scientiae Circumstantiae,2016,36(1):149-155.
[3] ORTEGA-CLEMENTE A,CAFFAREL-MÉNDEI S,PONCE-NOYOLA M T,et al. Fungal post-treatment of pulp mill effluents for the removal of recalcitrant pollutants[J]. Bioresource Technology,2009,100(6):1885-1894.
[4] 吴海珍,夏芳,韦朝海,等. 养殖污水生物处理的新型流态化技术原理及其应用案例[J]. 环境工程学报,2012,6(1):15-20. WU H Z,XIA F,WEI C H,et al. Novel fluidization technical principle and application case for biotreatment of livestock wastewater[J]. Chinese Journal of Environmental Engineering,2012,6(1):15-20.
[5] NAAMA G R,BETTINA S,CHRISTINA R,et al. Transformation pathways of the recalcitrant pharmaceutical compound carbamazepine by the white-rot fungus pleurotus ostreatus:effects of growth conditions[J]. Environmental Science & Technology,2015,49(20):12351-12362.
[6] ADEM Y,OZER C,ERKAN S. Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors[J]. Journal of Membrane Science,2016,511:228-237.
[7] 李平,韦朝海,吴超飞,等. 厌氧/好氧生物流化床耦合处理垃圾渗滤液的新工艺研究[J]. 高校化学工程学报,2002,16(3):345-350. LI P,WEI C H,WU C F,et al. Study on the treatment of landfill leachate by combining anaerobic/aerobic biological fluidized bed[J]. Journal of Chemical Engineering of Chinese Universities,2002,16(3):345-350.
[8] YANG N,WANG W,GE W,et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal,2003,96(1/2/3):71-80.
[9] HOU B,LI H. Relationship between flow structure and transfer coefficients in fast fluidized beds[J]. Chemical Engineering Journal,2010,157(2/3):509-519.
[10] DRAKE J B,HEINDEL T J. Comparisons of annular hydrodynamic structures in 3D fluidized beds using X-ray computed tomography imaging[J]. Journal of Fluids Engineering,2012,134(8):081305.
[11] LIU R,LIU Y,LIU C. Development of an efficient CFD-simulation method to optimize the structure parameters of an airlift sonobioreactor[J]. Chemical Engineering Research & Design,2013,91(2):211-220.
[12] XU L,LIU R,WANG F,et al. Development of a draft-tube airlift bioreactor for Botryococcus braunii with an optimized inner structure using computational fluid dynamics[J]. Bioresource Technology,2012,119(7):300-305.
[13] 韦朝海,吴锦华,王刚,等. 生物三相流化床结构特征及性能影响分析[J]. 化工时刊,2001,15(4):4-8. WEI C H,WU J H,WANG G,et al. The structural characteristic of biological three-phase fluidized bed and the influence on performance of BTPFB[J]. Chemical Industry Times,2001,15(4):4-8.
[14] HEYOUNI A,ROUSTAN M,Z D Q. Hydrodynamics and mass transfer in gas-liquid flow through static mixers[J]. Chemical Enginnering Science,2002,57(16):3325-3333.
[15] 韦朝海,李磊. 底隙设置挡板内循环流化床水力特性分析[J]. 化工学报,2007,58(10):2480-2484. WEI C H,LI L. Hydraulic characteristics of internal loop fluidized bed with baffle setting on bottom[J]. Journal of Chemical Industry and Engineering (China),2007,58(10):2480-2484.
[16] ZHANG T,WEI C H,FENG C H,et al. A novel airlift reactor enhanced by funnel internals and hydrodynamics prediction by the CFD method[J]. Bioresource Technology,2012,104(1):600-607.
[17] 韦朝海,吴锦华,吴超飞,等. 新型内构件内循环三相流化床氧传递特性的研究[J]. 中国环境科学,2001,21(6):28-31. WEI C H,WU J H,WU C F,et al. Study on the characteristics of oxygen transfer in new-type structure inner loop three-phase fluidized bed[J]. China Environmental Science,2001,21(6):28-31.
[18] 谢波,韦朝海,吴超飞,等. 缩放型导流筒气升式内环流生物反应器流体力学与传质特性[J]. 高校化学工程学报,1999,13(2):121-128. XIE B,WEI C H,WU C F,et al. Hydrodynamics and mass transfer in an internal loop airlift bioreactor with a convergence-divergence draft tube[J]. Journal of Chemical Engineering of Chinese Universities,1999,13(2):121-128.
[19] 于光认,陈晓春,刘辉. 有内构件工业湍动流化床反应器的模型化——反应器模型的开发[J]. 化工学报,2003,54(8):1150-1154. YU G R,CHEN X C,LIU H. Modeling of industrial turbulent fluidized bed with inner vertical heat exchanger—development of reactor model[J]. Journal of Chemical Industry and Engineering (China),2003,54(8):1150-1154.
[20] 王若艺,刘对平,李智,等. 细颗粒气固流化床内斜片挡板受力特性的实验研究[J]. 过程工程学报,2015,15(3):375-380. WANG R Y,LIU D P,LI Z,et al. Experimental study on the acting forces on a single slant slat immersed in a gas and fine particles fluidized bed[J]. The Chinese Journal of Process Engineering,2015,15(3):375-380.
[21] 郑平,陈建伟,唐崇俭,等. 一种螺旋式自循环厌氧生物反应器:200720106182.6 [P]. 2008-01-09. ZHENG P,CHEN J W,TANG C J,et al. A spiral type spontaneous circulation anaerobic bioreactor:200720106182.6 [P]. 2008-01-09.
[22] 麦礼杰,张涛,欧桦瑟,等. 底隙十字挡板对四边形流化床流体力学性能优化数值模拟[J]. 环境科学学报,2014,34(11):2739-2745. MAI L J,ZHANG T,OU H S,et al. Numerical optimization on hydrodynamics characteristics of rectangular fluidized bed with a cross-shaped baffle on the bottom[J]. Acta Scientiae Circumstantiae,2014,34(11):2739-2745.
[23] 麦礼杰. 基于CFD的四边形内循环流化床流体力学性质分析及其性能优化研究[D]. 广州:华南理工大学,2014. MAI L J. Study of hydrodynamic characteristics in rectangular inner loop fluidized bed and its performance optimization based on CFD[D]. Guangzhou:South China University of Technology,2014.
[24] 朱家亮,陈祥佳,张涛,等. 基于CFD的内构件强化内循环流化床流场结构分析[J]. 环境科学学报,2011,31(6):1212-1219. ZHU J L,CHEN X J,ZHANG T,et al. Computational fluid dynamics simulation of hydrodynamics in an internal-loop fluidized bed reactor with a funnel-shaped internal[J]. Acta Scientiae Circumstantiae,2011,31(6):1212-1219.
[25] 王志平. 好氧颗粒污泥脱氮特性及其过程研究[D]. 哈尔滨:哈尔滨工业大学,2006. WANG Z P. Nitrogen removal properties and process of aerobic granular sludge[D]. Harbin:Harbin Institute of Technology,2006.
[26] DAMMEL E E,SCHROEDER E D. Density of activated sludge solids[J]. Water Research,1992,26(11):1555-1556.
[27] BIGGS C A,LANT P A. Modelling activated sludge flocculation using population balances[J]. Powder Technology,2002,124(3):201-211.
[28] DROPPO I G,LEPPARD G G,FLANNIGAN D T,et al. The freshwater floc:a functional relationship of water and organic and inorganic floc constituents affecting suspended sediment properties[J]. Water Air & Soil Pollution,1997,99(1/2/3/4):43-53.
[29] 万东玉,刘金平,李志坤,等. 气液固三相逆流化床内气液传质特性的实验研究和数值模拟[J]. 青岛科技大学学报(自然科学版),2014,35(6):597-602. WANG D Y,LIU J P,LI Z K,et al. Numerical simulation and experimental study of gas-liquid mass transfer characteristics in gas-liquid-solid three-phase inverse fluidized beds[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition),2014,35(6):597-602.
[30] 朱家亮,张涛,韦朝海. 基于结构参数响应的内循环流化床流体特性优化数值模拟[J]. 环境科学学报,2012,32(11):2732-2740. ZHU J L,ZHANG T,WEI C H. Numerical optimization on hydrodynamic characteristics of internal-loop fluidized bed based upon structure parameter response relationships[J]. Acta Scientiae Circumstantiae,2012,32(11):2732-2740.
[31] 郁达伟,魏源送,郑祥,等. 多相流和湍流模型对平板膜生物反应器模拟的影响[J]. 化工学报,2014,65(s1):377-385. YU D W,WEI Y S,ZHENG X,et al. Impact of multiphase and turbulence models on hydrodynamics simulation of commercial flat-sheet MBR[J]. 2014,65(s1):377-385.
[32] WANG H,DING J,LIU X,et al. The impact of water distribution system on the internal flow field of EGSB by using CFD simulation[J]. Applied Mechanics & Materials,2014,614:596-604.
[33] BASHA O M,WENG L,MEN Z,et al. CFD modeling with experimental validation of the internal hydrodynamics in a pilot-scale slurry bubble column reactor[J]. International Journal of Chemical Reactor Engineering,2016,14(2):599-619.
[34] 吴宗应,杨宁. 曳力模型对模拟鼓泡塔气含率的影响[J]. 化工学报,2010,61(11):2817-2822. WU Z Y,YANG N. Effect of drag models on simulation of gas hold-up in bubble columns[J]. CIESC Journal,2010,61(11):2817-2822.
[35] PAN K,SU K,ZHANG S,et al. Hydrodynamics and permeability of aerobic granular sludge:the effect of intragranular characteristics and hydraulic conditions[J]. Biochemical Engineering Journal,2016,113:133-140.
[36] JIANG X,YANG N,YANG B. Computational fluid dynamics simulation of hydrodynamics in the riser of an external loop airlift reactor[J]. Particuology,2016,27:95-101.
[37] MOSTOUFI N,MEHRNIA M R,VALI M. Hydrodynamics of an airlift bioreactor treating petroleum-based liquids:experiment and CFDM[J]. Energy Sources Part A:Recovery Utilization & Environmental Effects,2014,36(12):1296-1304.
[38] LUO H,AL-DAHHAN M H. Local gas holdup in a draft tube airlift bioreactor[J]. Chemical Enginnering Science,2010,65(15):4503-4510.
[39] LUO H,AL-DAHHAN M H. Verification and validation of CFD simulations for local flow dynamics in a draft tube airlift bioreactor[J]. Chemical Enginnering Science,2011,66(5):907-923.
[40] ATENAS M,CLARK M,LAZAROVA V. Holdup and liquid circulation velocity in a rectangular air-lift bioreactor[J]. Industrial & Engineering Chemistry Research,1999,38(3):944-949.
[41] 韦朝海,谢波,吴超飞,等. 三重环流生物流化床的流体力学与传质特性[J]. 化学反应工程与工艺,1999,15(2):55-62. WEI C H,XIE B,WU C F,et al. Hydrodynamics and mass transfer of triplet loop biological fluidized bed[J]. Chemical Reaction Engineering and Technology,1999,15(2):55-62.
[42] WU J,LU Z Y,HH J C,et al. Disruption of granules by hydrodynamic force in internal circulation anaerobic reactor[J]. Water Science and Technology,2006,54(9):9-16.
[43] CELMER D,OLESZKIEWICZ J A,CICEK N. Impact of shear force on the biofilm structure and performance of a membrane biofilm reactor for tertiary hydrogen-driven denitrification of municipal wastewater[J]. Water Research,2008,42(12):3057-3065.
[44] LIU Y,TAY J H. The essential role of hydrodynamic shear force in the formation of biofilm and granular sludge[J]. Water Research,2002,36(7):1653-1665.
[45] 蓝惠霞,陈中豪,陈元彩. 影响好氧颗粒污泥形成和性能的因素分析[J]. 环境保护,2004(5):28-31. LAN H X,CHEN Z H,CHEN Y C. Effect factors on formation and performance of aerobic granular sludge[J]. Environmental Protection,2004(5):28-31.
[46] 韦朝海,谢波,张献忠,等. 内循环流化床结构参数及其反应器性能的相关性[J]. 高校化学工程学报,2001,15(3):236-241. WEI C H,XIE B,ZHANG X Z,et al. Relationship between reactor performances and structural parameters of inner-loop three-phase fluidized bed[J]. Journal of Chemical Engineering of Chinese Universities,2001,15(3):236-241.
[47] 任源,韦朝海,吴超飞,等. 焦化废水水质组成及其环境学与生物学特性分析[J]. 环境科学学报,2007,27(7):1094-1100. REN Y,WEI C H,WU C F,et al. Environmental and biological characteristics of coking wastewater[J]. Acta Scientiae Circumstantiae,2007,27(7):1094-1100.
[48] 陈珺. 城市污水处理厂的污泥膨胀研究分析[J]. 给水排水,2009,35(12):31-34. CHEN J. Study and analysis on sludge bulking in municipal wastewater treatment plants[J]. Water & Wastewater Engineering,2009,35(12):31-34.
[49] ZHOU D,DONG S,LI K,et al. Suspended solid abatement in a conical fluidized bed flocculator[J]. Frontiers of Environmental Science & Engineering,2013,7(1):127-134.
[50] 周平,钱易. 空气提升内循环生物流化床反应器动力学研究[J]. 环境科学,1996,17(6):9-12. ZHOU P,QIAN Y. Study on kinetics of biofilm suspension reactor[J]. Environmental Science,1996,17(6):9-12.
[51] RUSSELL A B,THOMAS C R,LILLY M D. The influence of vessel height and top-section size on the hydrodynamic characteristics of airlift fermentors.[J]. Biotechnology and bioengineering,1994,43(1):69-76.
[52] 张涛. 内循环流化床反应器流动传质特性的计算流体力学模拟研究[D]. 广州:华南理工大学,2012. ZHANG T. Simulation of mass transfer and hydrodynamic characteristics in internal loop fluidized bed reactor by computational fluid dynamics method[D]. Guangzhou:South China University of Technology,2012.
[53] 韦朝海,李磊,吴锦华,等. 漏斗型导流内构件对内循环三相流化床流体力学与传质特性的影响[J]. 化工学报,2007,58(3):591-595. WEI C H,LI L,WU J H,et al. Influence of funnel shape internals on hydrodynamics and mass transfer in internal loop three phase fluidized bed[J]. Journal of Chemical Industry and Engineering (China),2007,58(3):591-595.
[54] 张静蓉,王淑莹,尚会来,等. 污水短程硝化反硝化和同步硝化反硝化生物脱氮中N2O释放量及控制策略[J]. 环境科学,2009,30(12):3624-3629. ZHANG J R,WANG S Y,SHAGN H L,et al. N2O emission and control in shortcut nitrification and denitrification and simultaneous nitrification and denitrification biological nitrogen removal systems[J]. Environmental Science,2009,30(12):3624- 3629.
[55] 陈英文,陈徉,沈树宝. 膜生物反应器同步硝化反硝化系统的研究[J]. 环境工程学报,2008,2(7):902-905. CHEN Y W,CHEN Y,SHEN S B. Study on simultaneous nitrification and denitrification in MBR system[J]. Chinese Journal of Environmental Engineering,2008,2(7):902-905. |