[1] LI J R,SCULLEY J,ZHOU H C. Metal-organic frameworks for separations[J]. Chem. Rev.,2012,112(2):869-932.
[2] 李立博,王勇,王小青,等. 柔性金属有机骨架材料(MOFs)用于气体吸附分离[J]. 化工进展,2016,35(6):1794-1803. LI L B,WANG Y,WANG X Q,et al. Selective gas adsorption and separation in flexible metal-organic frameworks[J]. Chem. Ind. Eng. Prog.,2016,35(6):1794-1803.
[3] 杜峰,李鹂. UiO-66(Zr)系列MOFs催化材料的制备及在乳酸乙酯合成中的应用[J]. 化工进展,2015,34(11):3938-3950. DU F,LI L. Preparation of UiO-66(Zr) MOFs and their application as catalysts for the synthesis of ethyllactate[J]. Chem. Ind. Eng. Prog., 2015,34(11):3938-3950.
[4] FÉREY G,MELLOT-DRAZNIEKS C,SERRE C,et al. A chromium terephthalate based solid with unusually large pore volumes and surface area[J]. Science,2005,309(5743):2040-2042.
[5] LEE Y R, KIM J, AHN W S. Synthesis of metal-organic frameworks:a mini review[J]. Korean J. Chem. Eng.,2013,30(9):1667-1680.
[6] 陈恒,陈绍云,赵文平,等. 晶种和晶化模式对金属有机骨架MIL-101合成的影响[J]. 功能材料,2014,45(23):23115-23120. CHEN H,CHEN S Y,ZHAO W P,et al. Influence of seed crystals and crystallization mode on the synthesis of metal-organic framework MIL-101[J]. J. Funct. Mater.,2014,45(23):23115-23120.
[7] JHUNG S H,LEE J H,YOON J W,et al. Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability[J]. Adv. Mater.,2007,19(26):121-124.
[8] BROMBERG L,DIAO Y,WU H M,et al. Chromium(Ⅲ) terephthalate metal organic framework (MIL-101):HF-free synthesis,structure,polyoxometalate composites,and catalytic properties[J]. Chem. Mater.,2012,24(9):1664-1675.
[9] YANG L T,QIU L G,HU S M,et al. Rapid hydrothermal synthesis of MIL-101 metal-organic framework nanocrystals using expanded graphite as a structure-directing template[J]. Inorg. Chem. Commun., 2013,35:265-267.
[10] KIM J,LEE Y R,AHN W S. Dry-gel conversion synthesis of Cr-MIL-101 aided by grinding:high surface area and high yield synthesis with minimum purification[J]. Chem. Commun.,2013,49:7647-7649.
[11] JIANG D M,BURROWS A D,EDLER K J. Size-controlled synthesis of MIL-101 nanoparticles with enhanced selectivity for CO2 over N2[J]. Cryst. Eng. Comm.,2011,13(23):6916-6919.
[12] YANG J F,ZHAO Q,LI J,et al. Synthesis of metal-organic framework MIL-101 in TMAOH-Cr(NO3)3-H2BDC-H2O and its hydrogen-storage behavior[J]. Micropor. Mesopor. Mater.,2010,130(1/3):174-179.
[13] 陈恒,陈绍云,苑兴洲,等. 咪唑衍生物辅助合成金属有机骨架MIL-101及CO2吸附性能[J]. 化工进展,2014,33(7):1808-1815. CHEN H,CHEN S Y,YUAN X Z,et al. Synthesis and CO2 adsorption properties of metal-organic framework MIL-101 by imidazole derivatives-assistant route[J]. Chem. Ind. Eng. Prog., 2014,33(7):1808-1815.
[14] SERRE C,MILLANGE F,SURBLE S,et al. A route to the synthesis of trivalent transition metals porous carboxylates with trimeric secondary building units[J]. Angew. Chem. Int. Ed.,2004,43(46):6286-6289.
[15] 郭金涛,陈勇,荆钰,等. 以醋酸盐为矿化剂合成金属有机骨架MIL-101[J]. 高等学校化学学报,2012,33(4):668-672. GUO J T,CHEN Y,JING Y,et al. Synthesis of metal organic framework MIL-101 with acetate as mineralization agent[J]. Chem. J. Chinese Universities,2012,33(4):668-672.
[16] 陈恒. 咪唑化合物辅助合成金属有机骨架MIL-101及其CO2吸附性能研究[D]. 大连:大连理工大学,2014. CHEN H. Synthesis and CO2 adsorption property of metal-organic framework MIL-101 by an imidazole-assistarit route[D]. Dalian:Dalian University of Technology,2014.
[17] KHAN N A,KANG I J,SEOK H Y,et al. Facile synthesis of nano-sized metal-organic frameworks,chromium-benzenedicarboxylate, MIL-101[J]. Chem. Eng. J.,2011,166(3):1152-1157.
[18] 王伟. 用于碳捕获的金属有机骨架材料MIL-101制备研究[D]. 南京:南京理工大学,2013. WANG W.[D]. Preparation of metal-organic framework MIL-101for carbon capture[D]. Nanjing:Nanjing University of Science and Technology,2013.
[19] 贺敏,张建功,范彬彬,等. MIL-101在不同水热晶化条件下的优化合成及其环己烷催化氧化性能研究[J]. 应用化工,2014,43(6):1037-1041. HE M,ZHANG J G,FAN B B,et al. Synthesis for MIL-101(Cr) with highly cyclohexane catalytic oxidation performance by optimizing hydrothermal crystalline conditions[J]. Appl. Chem. Ind., 2014,43(6):1037-1041
[20] HWANG Y K,HONG D Y,CHANG J S, et al. Selective sulfoxidation of aryl sulfides by coordinatively unsaturated metal centers in chromium carboxylate MIL-101[J]. Appl. Catal. A,2009, 358(2):249-253.
[21] SURESH M,RAJU B D,RAMARAO K S,et al. Metal organic framework MIL-101 for dehydration reactions[J]. J. Chem. Sci., 2014,126(2):527-532.
[22] ANDREA S P,NAVALÓN S,CIRUJANO F G,et al. MIL-101 as reusable solid catalyst for autoxidation of benzylic hydrocarbons in the absence of additional oxidizing reagents[J]. ACS Catal.,2015,5(6):3216-3224.
[23] ADRIÁN G P,ANDREA S P,SERGIO N,et al. MIL-101 promotes the efficient aerobic oxidative desulfurization of dibenzothiophenes[J]. Green Chem.,2016,18(2):508-515.
[24] LIU H L,LIU Y L,LI Y W,et al. Metal-organic framework supported gold nanoparticles as a highly active heterogeneous catalyst for aerobic oxidation of alcohols[J]. J. Phys. Chem. C,2010,114(31):13362-13369.
[25] SUN Z G,LI G,LIU L P,et al. Au nanoparticles supported on Cr-based metal-organic framework as bimetallic catalyst for selective oxidation of cyclohexane to cyclohexanone and cyclohexanol[J]. Catal. Commun.,2012,27:200-205.
[26] LIU H L,LI Y W,LUQUE R,et al. A tuneable bifunctional water-compatible heterogeneous catalyst for the selective aqueous hydrogenation of phenols[J]. Adv. Synth. Catal.,2011,353(17):3107-3113.
[27] PAN Y Y,YUAN B Z,LI Y W,et al. Multifunctional catalysis by Pd@MIL-101:one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework[J]. Chem. Comm.,2010,46(13):2280-2282.
[28] YUAN B Z,PAN Y Y,LI Y W,et al. A highly active heterogeneous palladium catalyst for the suzuki-miyaura and ullmann coupling reactions of aryl chlorides in aqueous media[J]. Angew. Chem. Int. Ed.,2010,49(24):4054-4058.
[29] CHEN G Z,WU S J,LIU H L,et al. Palladium supported on an acidic metal-organic framework as an efficient catalyst in selective aerobic oxidation of alcohols[J]. Green Chem.,2013,15(1):230-235.
[30] AIJAZ A,KARKAMKAR A,CHOI Y J,et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework:a double solvents approach[J]. J. Am. Chem. Soc.,2012, 134(34):13926-13929.
[31] PAN H Y,LI X H,YU Y,et al. Pt nanoparticles entrapped in mesoporous metal-organic frameworks MIL-101 as an efficient catalyst for liquid-phase hydrogenation of benzaldehydes and nitrobenzenes[J]. J. Mol. Catal. A,2015,399:1-9.
[32] WU F,QIU L G,KE F,et al. Copper nanoparticles embedded in metal-organic framework MIL-101 as a high performance catalyst for reduction of aromatic nitro compounds[J]. Inorg. Chem. Comm., 2013,32:5-8.
[33] ZHAO P P,CAO N,SU J,et al. NiIr nanoparticles immobilized on the pores of MIL-101 as highly efficient catalyst toward hydrogen generation from hydrous hydrazine[J]. ACS Sustainable Chem. Eng., 2015,3(6):1086-1093.
[34] LONG J L,LIU H L,WU S J,et al. Selective oxidation of saturated hydrocarbons using Au-Pd alloy nanoparticles supported on metal-organic frameworks[J]. ACS Catal.,2013,3(4):647-654.
[35] CAO N,YANG L,DAI H M,et al. Immobilization of ultrafine bimetallic Ni-Pt nanoparticles inside the pores of metal-organic frameworks as efficient catalysts for dehydrogenation of alkaline solution of hydrazine[J]. Inorg. Chem.,2014,53(19):10122-10128.
[36] TRIVEDI M,BHASKARA N,KUMAR A,et al. Metal-organic framework MIL-101 supported bimetallic Pd-Cu nanocrystals as efficient catalysts for chromium reduction and conversion of carbon dioxide at room temperature[J]. New J. Chem.,2016,40(4):3109-3118.
[37] CAO N,TAN S Y,LUO W,et al. Ternary CoAgPd nanoparticles confined inside the pores of MIL-101 as efficient catalyst for dehydrogenation of formic Acid[J]. Catal. Lett.,2016,146(2):518-524.
[38] BALU A M,LIN C S K,LIU HL,et al. Iron oxide functionalised MIL-101 materials in aqueous phase selective oxidations[J]. Appl. Catal. A-Gen.,2013,455:261-266.
[39] SAIKIA M,BHUYAN D,SAIKIA L. Facile synthesis of Fe3O4 nanoparticles on metal organic framework MIL-101:characterization and catalytic activity[J]. New J. Chem.,2015,39(1):64-67.
[40] 陈琪,费霞,何琴琴. MIL-101/P25复合材料的制备及光催化性能[J]. 无机化学学报,2014,30(5):993-1000. CHEN Q,FEI X,HE Q Q. Preparation and photocatalytic properties of MIL-101/P25 composites[J]. Chin. J. Inorg. Chem.,2014,30(5):993-1000.
[41] ZANG Y D,SHI J,ZHAO X M,et al. Highly stable chromium(Ⅲ) terephthalate metal organic framework(MIL-101) encapsulated 12-tungstophosphoric heteropolyacid as a watertolerant solid catalyst for hydrolysis and esterification[J]. Reac. Kinet. Mech. Cat.,2013, 109(1):77-89.
[42] SUSANA R,CARLOS M G,PATRÍCIA S,et al. An efficient oxidative desulfurization process using terbiumpolyoxometalate@MIL-101[J]. Catal. Sci. Technol.,2013,3(9):2404-2414.
[43] YU H X,XIE J W,ZHONG Y J,et al. One-pot synthesis of nitroalkenes via the henry reaction over amino-functionalized MIL-101 catalysts[J]. Catal. Commun.,2012,29:101-104.
[44] SAIKIA M,SAIKIA L. Palladium nanoparticles immobilized on an aminefunctionalized MIL-101(Cr) as a highly active catalyst for oxidative amination of aldehydes[J]. RSC Adv.,2016,6(18):14937-14947.
[45] JIN Y, SHI J,ZHANG F M, et al. Synthesis of sulfonic acid-functionalized MIL-101 for acetalization of aldehydes with diols[J]. J. Mol. Catal. A-Chem.,2014,383/384:167/171.
[46] ZANG Y D,SHI J,ZHANG F M,et al. Sulfonic acid-functionalized MIL-101 as a highly recyclable catalyst for esterification[J]. Catal. Sci. Technol.,2013,3(8):2044-2049.
[47] BANERJEE M,DAS S,YOON M,et al. Postsynthetic modification switches an achiral framework to catalytically active homochiral metal-organic porous materials[J]. J. Am. Chem. Soc.,2009,131(22):7524-7525.
[48] FARNAZ Z,SHAHRAM T,MAJID M,et al. Synthesis and characterization of manganese(III) porphyrin supported on imidazole modified chloromethylated MIL-101:a heterogeneous and reusable catalyst for oxidation of hydrocarbons with sodium periodate[J]. J. Solid. State Chem.,2014,218:56-63.
[49] FARNAZ Z,SHAHRAM T,MAJID M,et al. Manganese(III) tetrapyridylporphyrin-chloromethylated MIL-101 hybrid material:a highly active catalyst for oxidation of hydrocarbons[J]. Appl. Catal. A-Gen.,2014,477:34-41. |