[1] GUPTA C K, SATHIYAMOORTHY D. Fluid bed technology in materials processing[M]. Boca Raton, FL: CRC Press, 1999. [2] ANDERSON T B, JACKSON R. A fluid mechanical description of fluidized beds[J]. Industrial & Engineering Chemistry Fundamentals, 1967, 6(4): 527-539. [3] SEE C H, HARRIS A T. A review of carbon nanotube synthesis viafluidized-bed chemical vapor deposition[J]. Industrial & Engineering Chemistry Research, 2007, 46(4): 997-1012. [4] CHOY K L. Chemical vapour deposition of coatings[J]. Progress in Materials Science, 2003, 48: 570-170. [5] CECILIA M, HOKWON K, MANISH C. A review of chemical vapour deposition of graphene on copper[J]. Journal of Materials Chemistry, 2011, 21(10): 3324-3334. [6] STINTON D P, BESMANN T M, LOWDEN R A. Advanced ceramics by chemical vapor deposition techniques[J]. American Ceramic Society Bulletin, 1988, 67(2): 350-355. [7] 杨毅, 刘宏英, 李凤生, 等. 纳米/微米复合材料气相制备技术述评[J]. 化工进展, 2005, 24(2): 137-141. [8] VAHLAS C, CAUSSAT B, SERP P, Angelopoulos G N. Principles and applications of CVD powder technology[J]. Materials Science and Engineering, 2006, R53: 1-72. [9] CAUSSAT B, VAHLAS C. CVD and Powders: a great potential to create new materials[J]. Chemical Vapor Deposition, 2007, 13: 443-445. [10] 潘小强, 杨静, 张良, 等, 核燃料颗粒化学气相沉积包覆铌层的热力学分析[J]. 核动力工程, 2013, 34(5): 61-64. [11] NABIELEK H, KÜHNLEIN W, SCHENK W, et al. Development of advanced HTR fuel elements[J]. Nuclear Engineering and Design, 1990, 121(2): 199-210. [12] FUKUDA K, OGAWA T, HAYASHI K, et al. Research and development of HTTR coated particle fuel[J]. Journal of Nuclear Science and Technology, 1991, 28(6): 570-581. [13] TANG C H, TANG Y P, ZHU J G, et al. Design and manufacture of the fuel elements for the 10MW high temperature gas-cooled rector[J]. Nuclear Engineering and Design, 2002, 218 (1-3): 91-102. [14] TANG C H, TANG Y P, ZHU J G, et al. Research and development of fuel element for Chinese 10MW high temperature gas-cooled reactor[J]. Journal of Nuclear Science and Technology, 2000, 37(9): 802-806. [15] PORTER I E, KNIGHT T W, DULUDE M C, et al. Design and fabrication of an advanced TRISO fuel with ZrC coating[J]. Nuclear Engineering and Design, 2013, 259: 80-186. [16] LIU B, LIU C, SHAO Y L, et al. Deposition of ZrC-coated particle for HTR with ZrCl4 powder[J]. Nuclear Engineering and Design, 2012, 251: 349 -353. [17] BAUGHMAN R H, ZAKHIDOV A A, DE HEER W A. Carbon nanotubes-the route toward applications[J]. Science, 2002, 297(5582): 787-792. [18] HIRSCH A. Functionalization of single-walled carbon nanotubes[J]. Angewandte Chemie-International Edition, 2002, 41(11): 1853-1859. [19] ZHANG Q, HUANG J Q, ZHAO M Q, et al Carbon nanotube mass production: principles and processes[J]. ChemSusChem, 2011, 4: 864-889. [20] TESSONNIER J P, SU D S. Recent progress on the growth mechanism of carbon nanotubes: a review[J]. ChemSusChem, 2011, 4: 824-847. [21] 梁尤轩, 赵斌, 姜川, 等, 垂直碳纳米管阵列的生长控制研究进展[J]. 化工进展, 2014, 33(6): 1491-1497. [22] LI Y M, KIM W, ZHANG Y G, et al. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes[J]. Journal of Physics Chemical B, 2001, 105: 11424-11431. [23] AGO H, IMAMURA S, OKAZAKI T, et al. CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy[J]. Journalof Physics Chemical B, 2005, 109: 10035-10041. [24] LIU Y, QIAN W Z, ZHANG Q, et al. Hierarchical agglomerates of carbon nanotubes as high-pressure cushions[J]. Nano Letters, 2008, 8: 1323-1327. [25] WEN Q, QIAN W Z, NIE J Q, et al. 100 mm long, semiconducting triple-walled carbon nanotubes[J]. Advanced Materials, 2010, 22: 1867-1871. [26] DE Villoria R G, FIGUEREDO S L, HART A J, et al. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate[J]. Nanotechnology, 2009, 20: 405611. [27] PAN L J, HAYASHIDA T, HARADA A, et al. Effects of iron and indium tin oxide on the growth of carbon tubule nanocoils[J]. Physica B, 2002, 323: 350-351. [28] Lyubutin I S, Anosova O A, Frolov K V, et al. Iron nanoparticles in aligned arrays of pure and nitrogen-doped carbon nanotubes[J]. Carbon, 2012, 50: 2628-2634. [29] LIU R Z, LIU M L, CHANG J X, et al. Preparation of high flexible SiC nanowires by fluidized bed chemical vapor deposition[J]. Chemical Vapor Deposition, 2015, 21: 196-203. [30] HSU G, HOGLE R, ROHATGI N, et al. Fines in fluidized bed silane pyrolysis[J]. Journal of the Electrochemical Society, 1984, 131: 660-668. [31] HSU G, ROHATGI N, HOUSEMAN J. Silicon particle growth in a fluidized bed reactor[J]. AIChE Journal, 1987, 33(5): 784-791. [32] MURTHY T, MIYAMOTO N, SHIMBO M, Nishizawa J. Gas-phase nucleation during the thermal decomposition of silane in hydrogen[J]. Journal of Crystal Growth, 1976, 33: 1-7. [33] BALAJI S, DU J, WHITE C M, Ydstie B E. Multi-scale modeling and control of fluidized beds for the production of solar grade silicon[J]. Powder Technology, 2010, 199(1): 23-031. [34] 张攀, 王伟文, 陈光辉, 等, 流态化多晶硅化学气相沉积过程的数值模拟[J]. 人工晶体学报, 2012, 41(4): 942-949. [35] LAI S, DUDUKOVIC M P, RAMACHANDRAN P A. Chemical vapor deposition and homogeneous nucleation in fluidized bed reactors: silicon from silane[J]. Chemical Engineering Science, 1986, 41(4): 633-641. [36] 陆金东, 陈爱平, 马磊 等, 流化床CVD法原位合成CNTs-Ni-TiO2及其光催化性能[J]. 化工学报, 2012, 63(4): 1070-1075. [37] 马磊, 陈爱平, 陆金东, 等.流化床-化学气相沉积法制备CNT/Fe-Ni/TiO2及其光催化性能研究[J]. 无机材料学报, 2012, 27: 33-37. [38] Kainulainen T A, Niemela M K, Krause A O I. Ethenehydroformylation on Co/SiO2 catalysts[J]. Catalysis Letters, 1998, 53: 97-101. [39] MIYAO T, SHISHIKURA I, MATSUOKA M, et al. CVD synthesis of alumina-supported molybdenum carbide catalyst[J]. Chemistry Letters, 1996, 7: 561-562. [40] TOMISHIGE K, ASAKURA K, IWASAWA Y. Design and characterization by EXAFS, FTIR and TEM fo Rh-Sn/SiO2 catalysts active for NO-H2 reaction [J]. Journal of Catalyst, 1994, 149(1): 70-80. [41] AKSOYLU A E, FARIA J L, PEREIRA M F, et al. Highly dispersed activated carbon supported platinum catalysts prepared by OMCVD: a comparison with wet impregnated catalysts [J]. Applied Catalysis A, 2002, 243: 357-365. [42] YEN Y W, CHEN S W. NICKEL and copper deposition on fine alumina particles by using the chemical vapor deposition circulation fluidized bed reactor technique[J]. Journal of Materials Science, 2000, 35: 1439-1444. [43] VANNI F, MONTAIGU M, CAUSSAT B. Fluidized-bed chemical vapor deposition of silicon on very dense tungsten powder[J]. Chemical Engineering & Technology, 2015, 38(7): 1254-1260. [44] Ph Rodriguez B, CAUSSAT X I, ABLITZER C, et al. Alumina coatings on silica powders by Fluidized Bed Chemical Vapor Deposition from aluminium acetylacetonate[J]. Chemical Engineering Journal, 2012, 211: 68-76. [45] PEREZ-MARIANOA J, BORROSA S, PICASB J A, et al. Silicon nitride films by chemical vapor deposition in fluidized bed reactors at atmospheric pressure (AP/FBR-CVD)[J]. Surface& Coatings Technology, 2005, 200(5/6): 1719-1723. [46] VOUDOURIS N, ANGELOPOULOS G N. Modeling of TiC coating growth on plain carbon steels: application to the fluidized bed CVD process[J]. High Temperatrue Material Process, 2011, 15(2): 143-150. [47] LACKEY W J, STINTON D P, SEASE J D. Improving gas distributor for coating high temperature gas cooled-reactor fuel particles[J]. Nuclear Technology, 1975, 35: 227-236. [48] KAAE J L. Coating small particles by chemical vapor deposition while the particles are fluidized[C]//Materials Research Symposium Proceedings, 1995, 372: 9-12. [49] DU J, DUTTA S, ERIK YDSTIE B. Modeling and control of solar-grade silicon production in a fluidized bed reactor[J]. AIChE Journal, 2014, 60(5): 1740-1751. [50] BALAJI S, DU J, WHITE C M, et al. Multi-scale modeling and control of fluidized beds for the production of solar grade silicon[J], Powder Technology, 2010, 199: 23-31. [51] LI J L, CHEN G H, ZHANG P, et al. Technical challenges and progress in fluidized bed chemical vapor deposition of polysilicon[J]. Chinese Journal of Chemical Engineering, 2011, 19(5): 747-753. [52] MARSHALL D W. Kernel and particle coating improvements-part 2[C]//VHTR R&D FY10 Technical Review Meeting, 2010, Denver, Colorado. [53] LIU M L, LIU B, SHAO Y L. Optimization of the UO2 kernel coating process by 3D simulation of spouted bed dynamics in the coater[J], Nuclear Engineering and Design, 2014, 271: 68-72. [54] GE R H, YE J M, WANG H G, et al. Measurement of particle concentration in a wurster fluidized bed by electrical capacitance tomography sensors[J]. AIChE Journal, 2014, 60(12): 4051-4064. [55] REUGE N, CADORET L, CAUSSAT B. Multifluid eulerian modelling of a silicon fluidized bed chemical vapor deposition process: analysis of various kinetic models[J]. Chemical Engineering Journal, 2009, 148: 506-516. [56] CZOK G, YE M, HANS Kuipers J A M, et al. Modeling of chemical vapor deposition in a fluidized bed reactor based on discrete particle simulation[J]. International Journal of Chemical Reactor Engineering, 2005, 3: 1-26. [57] LIU M L, LIU R Z, LIU B L, et al. Numerical simulation of particle coating process using a multi-physical field coupling method [C]//The 6th Asian Particle Technology Symposium, 2015, Seoul, Korea. [58] LIU M L, WEN Y Y, LIU B Y, et al. Investigation of fluidization behavior of high density particle in spouted bed using CFD-DEM coupling method[J]. Powder Technology, 2015, 280: 72-82. [59] HSU G, ROHATGI N, HOUSEMAN J. Silicon particle growth in a fluidized bed reactor[J]. AIChE Journal, 1987, 33(5): 784-791. |