[1] 陳美恩,刘恩廷,陈鹏.全球生物产业发展主要模式及对我国的启示[J].未来与发展,2015(1):27-029. [2] 杨宝盈.全球生物产业的发展模式及对加快我国生物产业集聚的启示[J].经济师,2013(4):60-61. [3] SAVAGE P,MAHMOUD S. Development and economic trends in cancer therapeutic drugs:a 5-year update 2010—2014[J]. Br. J. Cancer,2015,112(6):1037-1041. [4] WALTHER J,GODAWAT R,HWANG C,et al. The business impact of an integrated continuous biomanufacturing platform for recombinant protein production[J]. J. Biotechnol.,2015,213:3-12. [5] TREE J A,RICHARDSON C,FOOKS A R,et al. Comparison of large-scale mammalian cell culture systems with egg culture for the production of influenza virus A vaccine strains[J]. Vaccine,2001,19(25-26):3444-3450. [6] LANGER E S. Trends in capacity utilization for therapeutic monoclonal antibody production[J]. MAbs,2009,1(2):151-156. [7] LEBRUN P,GIACOLETTI K,SCHERDER T,et al. A quality by design approach for longitudinal quality attributes[J]. J. Biopharm. Stat.,2015,25(2):247-259. [8] RATHORE A S,PATHAK M,GODARA A. Process development in the QbD paradigm:role of process integration in process optimization for production of biotherapeutics[J]. Biotechnol. Prog.,2015,10.1002/btpr.2209. [9] YU L X. Pharmaceutical quality by design:product and process development,understanding,and control[J]. Pharmaceutical Research,2008,25(4):781-791. [10] YU L X,BAKER J,BERLAM S C,et al. Advancing product quality:a summary of the Inaugural FDA/PQRI Conference[J]. AAPS J.,2015,17(4):1011-1018. [11] CLINCKE M F,MOLLERYD C,ZHANG Y,et al. Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor. Part I. Effect of the cell density on the process[J]. Biotechnology Progress,2013,29(3):754-767. [12] SARANTOS K,CLEO K. Analysis of the landscape of biologically-derived pharmaceuticals in Europe:dominant production systems,molecule types on the rise and approval trends[J]. European Journal of Pharmaceutical Sciences,2013,48(3):428-441. [13] LOFFELHOLZ C,KAISER S C,KRAUME M,et al. Dynamic single-use bioreactors used in modern liter-and m(3)-scale biotechnological processes:engineering characteristics and scaling up[J]. Disposable Bioreactors Ii,2014,138:1-44. [14] EIBL R,KAISER S,LOMBRISER R,et al. Disposable bioreactors:the current state-of-the-art and recommended applications in biotechnology[J]. Applied Microbiology and Biotechnology,2010,86(1):41-49. [15] EIBL R,LöFFELHOLZ C,EIBL D. Disposable bioreactors for inoculum production and protein expression[J].Methods Mol. Biol.,2014,1104:265-284. [16] ENBLAD G,KARLSSON H,LOSKOG A S. CAR T-cell therapy:the role of physical barriers and immunosuppression in lymphoma[J]. Hum. Gene Ther.,2015,26(8):498-505. [17] DAVENPORT A J,JENKINS M R,RITCHIE D S,et al. CAR-T cells are serial killers[J]. Oncoimmunology,2015,4(12):e1053684. [18] BARBAROUX M,GERIGHAUSEN S,HACKEL H. An approach to quality and security of supply for single-use bioreactors[J]. Adv. Biochem. Eng. Biotechnol.,2014,138:239-272. [19] LONG Q,LIU X X,YANG Y K,et al. The development and application of high throughput cultivation technology in bioprocess development[J]. Journal of Biotechnology,2014,192:323-238. [20] BAREITHER R,BARGH N,OAKESHOTT R,et al. Automated disposable small scale reactor for high throughput bioprocess development:a proof of concept study[J]. Biotechnol. Bioeng.,2013,110(12):3126-3138. [21] AMANULLAH A,OTERO J M,MIKOLA M,et al. Novel micro-bioreactor high throughput technology for cell culture process development:reproducibility and scalability assessment of fed-batch CHO cultures[J]. Biotechnology and Bioengineering,2010,106(1):57-67. [22] HORTSCH R,STRATMANN A,WEUSTER-BOTZ D. New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms[J]. Biotechnology and Bioengineering,2010,106(3):443-451. [23] HORTSCH R,WEUSTER-BOTZ D. Milliliter-scale stirred tank reactors for the cultivation of vicroorganisms[J]. Advances in Applied Microbiology,2010,73:61-82. [24] AGGARWAL K,JING F,MARANGA L,et al. Bioprocess optimization for cell culture based influenza vaccine production[J]. Vaccine,2011,29(17):3320-3328. [25] PAILLET C,FORNO G,KRATJE R,et al. Suspension-Vero cell cultures as a platform for viral vaccine production[J]. Vaccine,2009,27(46):6464-6467. [26] CHEN A,POH S L,DIETZSCH C,et al. Serum-free microcarrier based production of replication deficient Influenza vaccine candidate virus lacking NS1 using Vero cells[J]. Bmc. Biotechnology,2011,11:81. [27] SHEN C F,LANTHIER S,JACOB D,et al. Process optimization and scale-up for production of rabies vaccine live adenovirus vector (AdRG1.3)[J]. Vaccine,2012,30(2):300-306. [28] KNOWLES S,DRUGMAND J C,LENNAERTZ A,et al. Virus production with the ICELLIS (R) single-use bioreactor[J]. Human Gene Therapy,2014,25(11):A84-A. [29] RAJENDRAN R,LINGALA R,VUPPU S K,et al. Assessment of packed bed bioreactor systems in the production of viral vaccines[J]. AMB Express,2014,4:25. [30] VENTINI-MONTEIRO D,DUBOIS S,ASTRAY R M,et al. Insect cell entrapment,growth and recovering using a single-use fixed-bed bioreactor. Scaling up and recombinant protein production[J]. J. Biotechnol.,2015,216:110-115. [31] LESCH H P,VALONEN P,HEIKKILA K M,et al. iCELLis (R) fixed-bed technology provides an efficient scalable system for viral vector production[J]. Human Gene Therapy,2015,26(10):A25. [32] EIBL R,WERNER S,EIBL D. Bag bioreactor based on wave-induced motion:characteristics and applications[J]. Disposable Bioreactors,2009,115:55-87. [33] CLINCKE M F,MOLLERYD C,ZHANG Y,et al. Very high density of CHO cells in perfusion by ATF or TFF in WAVE bioreactor. Part I. Effect of the cell density on the process[J]. Biotechnol. Prog.,2013,29(3):754-767. [34] SWAIKA A,HAMMOND W A,JOSEPH R W. Current state of anti-PD-L1 and anti-PD-1 agents in cancer therapy[J]. Mol. Immunol.,2015,67(2):4-17. [35] LUSSIER D M,O'NEILL L,NIEVES L M,et al. Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions[J]. J. Immunother,2015,38(3):96-106. [36] SHUKLA A A,GOTTSCHALK U. Single-use disposable technologies for biopharmaceutical manufacturing[J]. Trends Biotechnol.,2013,31(3):147-154. [37] MINOW B,SEIDEMANN J,TSCHOEPE S,et al. Harmonization and characterization of different single-use bioreactors adopting a new sparger design[J]. Engineering in Life Sciences,2014,14(3):272-282. [38] LEVINE L H. Vaccine manufacturing facilities of the future[R]. London:Vaccines Europe,2010. [39] ANDERSSON H,VAN DEN BERG A. Microfluidic devices for cellomics:a review[J]. Sensors and Actuators B:Chemical,2003,92(3):315-325. [40] LANGEMANN T,MAYR U B,MEITZ A,et al. Multi-parameter flow cytometry as a process analytical technology (PAT) approach for the assessment of bacterial ghost production[J]. Appl. Microbiol. Biotechnol.,2016,100(1):409-418. [41] LOPES J A,COSTA P F,ALVES T P,et al. Chemometrics in bioprocess engineering:process analytical technology (PAT) applications[J]. Chemometrics and Intelligent Laboratory Systems,2004,74(2):269-275. [42] AKSU B,DE BEER T,FOLESTAD S,et al. Strategic funding priorities in the pharmaceutical sciences allied to quality by design (QbD) and process analytical technology (PAT)[J]. Eur. J. Pharm. Sci.,2012,47(2):402-405. [43] SCHAEFER C,CLICQ D,LECOMTE C,et al. A process analytical technology (PAT) approach to control a new API manufacturing process:development,validation and implementation[J]. Talanta,2014,120:114-125. [44] WHEELOCK A M,WHEELOCK C E. Trials and tribulations of 'omics data analysis:assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine[J]. Mol. Biosyst.,2013,9(11):2589-2596. |