化工进展 ›› 2025, Vol. 44 ›› Issue (12): 7299-7307.DOI: 10.16085/j.issn.1000-6613.2024-2047
• 资源与环境化工 • 上一篇
何丽君1(
), 张昊颖2, 马新青1, 王常艳2, 刘东方2(
)
收稿日期:2024-12-17
修回日期:2025-02-04
出版日期:2025-12-25
发布日期:2026-01-06
通讯作者:
刘东方
作者简介:何丽君(1985-),女,博士,工程师,研究方向为煤基工业固废治理。E-mail: lijunhe8715@163.com。
基金资助:
HE Lijun1(
), ZHANG Haoying2, MA Xinqing1, WANG Changyan2, LIU Dongfang2(
)
Received:2024-12-17
Revised:2025-02-04
Online:2025-12-25
Published:2026-01-06
Contact:
LIU Dongfang
摘要:
为推进煤气化渣的资源化利用并减少其中重金属对环境造成的污染,以内蒙古某煤化工企业的煤气化粗渣为研究对象,深入分析了其淋洗前后的微观结构特征、化学元素组成、重金属形态组成和风险评价指数(RAC);在模拟酸雨(pH=4.5)和地下水(pH=7.0)环境下,探究了煤气化粗渣中重金属的在静态浸淋和动态淋滤中的浸出行为,评估其作为充填材料可能对环境造成的影响。结果表明:煤气化粗渣主要由非晶态的硅铝酸盐构成,少部分是石英、方解石等。经过淋洗处理后,煤气化粗渣结构趋于松散,絮状残炭被去除,增强了粗渣的黏附性和结合力。淋洗后的粗渣化学成分仍保持以SiO2和Al2O3为主,CaO、K2O、TiO2等金属氧化物含量下降,说明淋洗方法对于重金属的去除具有一定效果。淋洗后粗渣中的重金属Cu、Pb和Cr多呈现稳定残渣态,不易受环境影响释放,可交换态和碳酸盐结合态占比较小,说明在酸性条件下解吸、释放的风险较小。RAC分析说明,淋洗后粗渣中的Cu和Cr的RAC在1~10之间,属于低风险;Pb的RAC下降,在30~50之间,属于高风险。静态浸淋实验证明,在模拟酸雨的条件下,淋洗后的煤气化粗渣中的Cu、Pb和Cr的浸出浓度相对较高,最高分别达到了590.4μg/L、67μg/L和76.24μg/L;动态淋滤实验证明,在模拟酸雨的条件下,粗渣中的重金属浸出浓度同样相对较高,最高分别达到了298.6μg/L、74.7μg/L和48.96μg/L。两种浸出模拟实验中的淋洗后粗渣重金属浸出浓度均低于地下水Ⅳ类标准,表明其环境风险较低,适合作为离层注浆材料使用。
中图分类号:
何丽君, 张昊颖, 马新青, 王常艳, 刘东方. 煤气化粗渣重金属形态及充填浸出行为[J]. 化工进展, 2025, 44(12): 7299-7307.
HE Lijun, ZHANG Haoying, MA Xinqing, WANG Changyan, LIU Dongfang. Speciation and leaching behavior of heavy metals in coal gasification coarse slag for backfilling[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7299-7307.
| 重金属元素 | 重金属总量/mg·kg-1 |
|---|---|
| Cu | 1889 |
| Pb | 1551 |
| Cr | 7866 |
表1 煤气化粗渣中的重金属总量
| 重金属元素 | 重金属总量/mg·kg-1 |
|---|---|
| Cu | 1889 |
| Pb | 1551 |
| Cr | 7866 |
| 试剂名称 | 分子式 | 生产厂家 | 纯度 |
|---|---|---|---|
| 浓硫酸 | H2SO4 | 天津市化学试剂供销公司 | 分析纯 |
| 浓盐酸 | HCl | ||
| 高氯酸 | HClO4 | ||
| 浓硝酸 | HNO3 | 大茂 | |
| 质量分数30%过氧化氢 | H2O2 | ||
| 氢氟酸 | HF | 阿拉丁 | |
| 醋酸 | CH3COOH | ||
| 醋酸钠 | CH3COONa | ||
| 盐酸羟胺 | NH2OH·HCl | ||
| 氯化镁 | MgCl2 | 麦克林 | |
| 醋酸铵 | CH3COONH4 |
表2 实验主要试剂
| 试剂名称 | 分子式 | 生产厂家 | 纯度 |
|---|---|---|---|
| 浓硫酸 | H2SO4 | 天津市化学试剂供销公司 | 分析纯 |
| 浓盐酸 | HCl | ||
| 高氯酸 | HClO4 | ||
| 浓硝酸 | HNO3 | 大茂 | |
| 质量分数30%过氧化氢 | H2O2 | ||
| 氢氟酸 | HF | 阿拉丁 | |
| 醋酸 | CH3COOH | ||
| 醋酸钠 | CH3COONa | ||
| 盐酸羟胺 | NH2OH·HCl | ||
| 氯化镁 | MgCl2 | 麦克林 | |
| 醋酸铵 | CH3COONH4 |
| 仪器名称 | 型号 | 生产厂家 |
|---|---|---|
| 纯水机 | UPR-Ⅱ-10T | 四川优普公司 |
| 电热鼓风干燥箱 | LDO-101-1 | 上海龙跃公司 |
| 高温马弗炉 | SX-G | 天津中环公司 |
| 恒温振荡器 | ZHWY-2102C | 上海智城公司 |
| pH计 | PHS-3C | 上海雷磁公司 |
| 恒温水浴锅 | SY-1-2 | 天津欧诺公司 |
| 原子吸收分光光度计 | TAS-990 | 北京普析公司 |
表3 实验主要仪器设备
| 仪器名称 | 型号 | 生产厂家 |
|---|---|---|
| 纯水机 | UPR-Ⅱ-10T | 四川优普公司 |
| 电热鼓风干燥箱 | LDO-101-1 | 上海龙跃公司 |
| 高温马弗炉 | SX-G | 天津中环公司 |
| 恒温振荡器 | ZHWY-2102C | 上海智城公司 |
| pH计 | PHS-3C | 上海雷磁公司 |
| 恒温水浴锅 | SY-1-2 | 天津欧诺公司 |
| 原子吸收分光光度计 | TAS-990 | 北京普析公司 |
| 提取步骤 | 重金属形态 | 浸提试剂 | 浸提条件 | 概念及存在形式[ |
|---|---|---|---|---|
| 1 | 可交换态 | 16mL 1mol/L MgCl2(pH=7.0) | (25±1)℃连续振荡1h | 吸附在颗粒表面的重金属,对环境变化敏感,易迁移转化,能被植物吸收 |
| 2 | 碳酸盐结合态 | 16mL 1mol/L NaAc(pH =5.0) | (25±1)℃连续振荡8h | 在碳酸盐矿物上形成的共沉淀结合态的重金属,弱酸性溶液中易迁移进入环境 |
| 3 | 铁锰结合态 | 16mL混合溶液(0.04mol/L NH2OH·HCl+质量分数为25%的HAc) | (96±3)℃水浴断续振荡4h | 吸附在铁锰氧化物表面或者以共沉淀形式存在的重金属,难迁移进入环境 |
| 4 | 有机结合态 | 3mL 0.01mol/L HNO3+5mL质量分数30%的H2O2溶液(HNO3调节pH=2.0) 5mL质量分数30%的H2O2溶液(pH=2.0) 5mL混合溶液(3.2mol/L NH4Ac+质量分数20%的HNO3溶液) | (85±2)℃水浴断续振荡2h (85±2)℃水浴断续振荡2h (25±1)℃连续振荡0.5h | 与未燃尽碳等相结合的重金属,含量较少且较难迁移 |
| 5 | 残渣态 | HCl+HNO3+HF+HClO4 | — | 存在于硅酸盐等固相晶格中的重金属,在自然界正常条件下不易释放,能长期稳定的存在,不易被植物吸收 |
表4 重金属各形态提取方法[16]
| 提取步骤 | 重金属形态 | 浸提试剂 | 浸提条件 | 概念及存在形式[ |
|---|---|---|---|---|
| 1 | 可交换态 | 16mL 1mol/L MgCl2(pH=7.0) | (25±1)℃连续振荡1h | 吸附在颗粒表面的重金属,对环境变化敏感,易迁移转化,能被植物吸收 |
| 2 | 碳酸盐结合态 | 16mL 1mol/L NaAc(pH =5.0) | (25±1)℃连续振荡8h | 在碳酸盐矿物上形成的共沉淀结合态的重金属,弱酸性溶液中易迁移进入环境 |
| 3 | 铁锰结合态 | 16mL混合溶液(0.04mol/L NH2OH·HCl+质量分数为25%的HAc) | (96±3)℃水浴断续振荡4h | 吸附在铁锰氧化物表面或者以共沉淀形式存在的重金属,难迁移进入环境 |
| 4 | 有机结合态 | 3mL 0.01mol/L HNO3+5mL质量分数30%的H2O2溶液(HNO3调节pH=2.0) 5mL质量分数30%的H2O2溶液(pH=2.0) 5mL混合溶液(3.2mol/L NH4Ac+质量分数20%的HNO3溶液) | (85±2)℃水浴断续振荡2h (85±2)℃水浴断续振荡2h (25±1)℃连续振荡0.5h | 与未燃尽碳等相结合的重金属,含量较少且较难迁移 |
| 5 | 残渣态 | HCl+HNO3+HF+HClO4 | — | 存在于硅酸盐等固相晶格中的重金属,在自然界正常条件下不易释放,能长期稳定的存在,不易被植物吸收 |
| 风险级别 | 重金属总含量中有效赋存形态所占质量分数/% |
|---|---|
| 无风险 | <1 |
| 低风险 | 1~10 |
| 中等风险 | 11~30 |
| 高风险 | 31~50 |
| 超高风险 | >50 |
表5 RAC风险评价准则
| 风险级别 | 重金属总含量中有效赋存形态所占质量分数/% |
|---|---|
| 无风险 | <1 |
| 低风险 | 1~10 |
| 中等风险 | 11~30 |
| 高风险 | 31~50 |
| 超高风险 | >50 |
| 化学成分 | 粗渣/% | 淋洗后粗渣/% |
|---|---|---|
| SiO2 | 50.03 | 52.72 |
| Al2O3 | 22.10 | 16.83 |
| Fe2O3 | 9.74 | 11.52 |
| CaO | 9.38 | 9.18 |
| K2O | 3.39 | 2.51 |
| TiO2 | 2.03 | 1.66 |
| Na2O | 1.16 | 0.87 |
| MgO | 0.97 | 0.82 |
| SO3 | 0.37 | 0.73 |
| P2O5 | 0.31 | 0.08 |
| SrO | 0.17 | 0.10 |
| MnO | 0.15 | 0.23 |
| ZnO | 0.14 | 1.85 |
| Cr2O3 | 0.03 | 0.47 |
| CuO | 0.02 | 0.06 |
| NiO | 0.01 | 0.17 |
表6 淋洗前后煤气化粗渣化学组成(质量分数)
| 化学成分 | 粗渣/% | 淋洗后粗渣/% |
|---|---|---|
| SiO2 | 50.03 | 52.72 |
| Al2O3 | 22.10 | 16.83 |
| Fe2O3 | 9.74 | 11.52 |
| CaO | 9.38 | 9.18 |
| K2O | 3.39 | 2.51 |
| TiO2 | 2.03 | 1.66 |
| Na2O | 1.16 | 0.87 |
| MgO | 0.97 | 0.82 |
| SO3 | 0.37 | 0.73 |
| P2O5 | 0.31 | 0.08 |
| SrO | 0.17 | 0.10 |
| MnO | 0.15 | 0.23 |
| ZnO | 0.14 | 1.85 |
| Cr2O3 | 0.03 | 0.47 |
| CuO | 0.02 | 0.06 |
| NiO | 0.01 | 0.17 |
| 重金属种类 | 风险评价指数 | |
|---|---|---|
| 粗渣原样 | 淋洗后粗渣 | |
| Cu | 0.79 | 7.68 |
| Pb | 56.41 | 34.53 |
| Cr | 0.21 | 6.03 |
表7 淋洗前后煤气化粗渣中重金属Cu、Pb、Cr风险评价指数
| 重金属种类 | 风险评价指数 | |
|---|---|---|
| 粗渣原样 | 淋洗后粗渣 | |
| Cu | 0.79 | 7.68 |
| Pb | 56.41 | 34.53 |
| Cr | 0.21 | 6.03 |
| [1] | XUE Zhonghua, YANG Chongyi, DONG Lianping, et al. Recent advances and conceptualizations in process intensification of coal gasification fine slag flotation[J]. Separation and Purification Technology, 2023, 304: 122394. |
| [2] | WANG Yafeng, TANG Yuegang, GUO Xin, et al. Fate of potentially hazardous trace elements during the entrained-flow coal gasification processes in China[J]. Science of the Total Environment, 2019, 668: 854-866. |
| [3] | 冯山钊, 徐阳阳, 邹海旭, 等. 煤气化粗渣循环再利用技术的研究进展[J]. 煤化工, 2024, 52(5): 16-22. |
| FENG Shanzhao, XU Yangyang, ZOU Haixu, et al. Research progress on coal gasification coarse slag recycle and reuse technology[J]. Coal Chemical Industry, 2024, 52(5): 16-22. | |
| [4] | 朱崟源, 朱干宇, 齐放, 等. 固废基水化硅酸钙制备及综合利用研究进展[J]. 硅酸盐通报, 2024, 43(2): 517-533. |
| ZHU Yinyuan, ZHU Ganyu, QI Fang, et al. Research progress on preparation and comprehensive utilization of solid waste based calcium silicate hydrates[J]. Bulletin of the Chinese Ceramic Society, 2024, 43(2): 517-533. | |
| [5] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
| ZHANG Lihong, JIN Yaoru, CHENG Fangqin. Resource utilization of coal gasification slag[J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4447-4457. | |
| [6] | 张嘉政, 毛岩鹏, 魏光朔, 等. 煤气化渣替代水泥窑燃料的协同处理工艺[J]. 化工进展, 2025, 44(7): 4202-4211. |
| ZHANG JiaZheng, MAO Yanpeng, WEI Guangshuo, et al. Co-processing technology for utilizing coal gasification slag as an alternative fuel in cement kilns[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 4202-4211. | |
| [7] | 袁蝴蝶. 煤气化炉渣本征特征及应用基础研究[D]. 西安: 西安建筑科技大学, 2020. |
| YUAN Hudie. Study on intrinsic characteristics and application basis of coal gasification slag[D]. Xi’an: Xi’an University of Architecture and Technology, 2020. | |
| [8] | 关天霞, 何红波, 张旭东, 等. 土壤中重金属元素形态分析方法及形态分布的影响因素[J]. 土壤通报, 2011, 42(2): 503-512. |
| GUAN Tianxia, HE Hongbo, ZHANG Xudong, et al. The methodology of fractionation analysis and the factors affecting the species of heavy metals in soil[J]. Chinese Journal of Soil Science, 2011, 42(2): 503-512. | |
| [9] | 陈肖役, 韩瑞, 张宁宁, 等. 煤气化渣中有害重金属元素的赋存特征及其风险评估[J/OL]. 洁净煤技术, 2024. (2024-11-06). . |
| CHEN Xiaoyi, HAN Rui, ZHANG Ningning, et al. Occurrence characteristics and risk assessment of harmful heavy metal elements in coal gasification slag[J/OL]. Clean Coal Technology, 2024. (2024-11-06). . | |
| [10] | 陈博文, 熊卓, 赵永椿, 等. 重金属在煤气化过程中迁移规律及在气化渣中浸出行为和固化处理综述[J]. 洁净煤技术, 2023, 29(7): 173-188. |
| CHEN Bowen, XIONG Zhuo, ZHAO Yongchun, et al. Migration pattern and solidification treatment technology of heavy metals in coal gasification slag: A review[J]. Clean Coal Technology, 2023, 29(7): 173-188. | |
| [11] | ZHANG Yifan, QU Jiangshan, ZHANG Jianbo, et al. Distribution, occurrence, and leachability of typical heavy metals in coal gasification slag[J]. Science of the Total Environment, 2024, 926: 172011. |
| [12] | JIANG Peng, XIE Chengrui, LUO Chunlin, et al. Distribution and modes of occurrence of heavy metals in opposed multi-burner coal-water-slurry gasification plants[J]. Fuel, 2021, 303: 121163. |
| [13] | 黄蕾, 刘伟, 殷良俊, 等. 煤矸石动态淋滤中重金属污染物的释放规律研究[J]. 四川环境, 2024, 43(2): 185-190. |
| HUANG Lei, LIU Wei, YIN Liangjun, et al. Study on leaching rules of heavy metal pollutants during dynamic leaching of coal gangue[J]. Sichuan Environment, 2024, 43(2): 185-190. | |
| [14] | 王常艳, 刘东方, 龙宇涵, 等. H2O2氧化联合化学复合淋洗去除煤气化细渣中重金属[J]. 化工环保, 2024(1): 73-79. |
| WANG Changyan, LIU Dongfang, LONG Yuhan, et al. Removal of heavy metals from coal gasification fine slag by H2O2 oxidation combined with chemical compound leaching[J]. China Industrial Economics, 2024(1): 73-79. | |
| [15] | TESSIER A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry, 1979, 51(7): 844-851. |
| [16] | 王志罡, 谢宏, 杨旭, 等. 贵州铜仁坝黄磷矿中铀赋存状态的逐级化学提取研究[J]. 岩矿测试, 2018, 37(3): 256-265. |
| WANG Zhigang, XIE Hong, YANG Xu, et al. Stepwise extraction study on the occurrence of uranium in Tongren bahuang phosphorite, Guizhou[J]. Rock and Mineral Analysis, 2018, 37(3): 256-265. | |
| [17] | 郝龙龙, 秦身钧, 庞薇, 等. 粉煤灰放置与利用过程中有害元素迁移规律及环境风险评估研究进展[J]. 硅酸盐通报, 2025, 44(1): 151-168. |
| HAO Longlong, QIN Shenjun, PANG Wei, et al. Research progress of migration law of harmful elements and environmental risk assessment in process of coal fly ash placement and utilization[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(1): 151-168. | |
| [18] | PERIN G, CRABOLEDDA L, LUCCHESE M, et al. Heavy metal speciation in the sediments of Northern Adriatic sea: A new approach for environmental toxicity determination[C]// Proceedings of the International Conference “Heavy Metals in the Environment”. CEP, 1985:454-456. |
| [19] | 仇韩峰. 煤气化灰渣资源环境属性研究[D]. 太原: 山西大学, 2021. |
| QIU Hanfeng. Study on environmental attributes of coal gasification ash resources[D]. Taiyuan: Shanxi University, 2021. | |
| [20] | LI Chang, ZHENG Liugen, JIANG Chunlu, et al. Characteristics of leaching of heavy metals from low-sulfur coal gangue under different conditions[J]. International Journal of Coal Science & Technology, 2021, 8(4): 780-789. |
| [21] | 吴亚娟, 任亮, 龚岩, 等. 煤气化细渣及其分离后富碳组分的气化反应性[J]. 洁净煤技术, 2024, 30(2): 61-71. |
| WU Yajuan, REN Liang, GONG Yan, et al. Gasification reactivity of coal gasification fine slag and its separated carbon-rich residues[J]. Clean Coal Technology, 2024, 30(2): 61-71. | |
| [22] | MIAO Zekai, WU Jianjun, ZHANG Yixin, et al. Chemical characterizations of different sized mineral-rich particles in fine slag from entrained-flow gasification[J]. Advanced Powder Technology, 2020, 31(9): 3715-3723. |
| [23] | 汤云, 袁蝴蝶, 尹洪峰, 等. 几种典型煤气化炉渣的碳热还原氮化过程[J]. 煤炭学报, 2016, 41(12): 3136-3141. |
| TANG Yun, YUAN Hudie, YIN Hongfeng, et al. Carbothermal reduction nitridation process of several typical coal gasification slag[J]. Journal of China Coal Society, 2016, 41(12): 3136-3141. | |
| [24] | GUO Yang, ZHANG Yixin, ZHAO Xu, et al. Multifaceted evaluation of distribution, occurrence, and leaching features of typical heavy metals in different-sized coal gasification fine slag from Ningdong Region, China: A case study[J]. Science of the Total Environment, 2022, 831: 154726. |
| [25] | 张瑞梅, 刘定桦, 何浩, 等. 煤气化细渣综合利用与碳灰分离技术现状[J]. 煤炭工程, 2023, 55(5): 175-182. |
| ZHANG Ruimei, LIU Dinghua, HE Hao, et al. Comprehensive utilization of coal gasification fine slag and carbon ash separation technology[J]. Coal Engineering, 2023, 55(5): 175-182. | |
| [26] | 陈伟, 魏志莹, 杨秀雯, 等. 土壤重金属植物有效性的化学评价法综述[J]. 农业环境科学学报, 2024, 43(11): 2615-2626. |
| CHEN Wei, WEI Zhiying, YANG Xiuwen, et al. Chemical evaluation methods for the phytoavailability of heavy metals in soils[J]. Journal of Agro-Environment Science, 2024, 43(11): 2615-2626. | |
| [27] | YOO Jong-Chan, LEE Chadol, LEE Jeung-Sun, et al. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil co-contaminated with petroleum and heavy metals[J]. Journal of Environmental Management, 2017, 186: 314-319. |
| [28] | 牟陈亚, 何亮, 李清毅, 等. 固化飞灰形状及填埋方式对重金属浸出的影响[J]. 中国环境科学, 2020, 40(4): 1601-1608. |
| MOU Chenya, HE Liang, LI Qingyi, et al. Effects of solidified fly ash shape and landfill method on leaching of heavy metals[J]. China Environmental Science, 2020, 40(4): 1601-1608. | |
| [29] | 阳安迪, 肖细元, 郭朝晖, 等. 模拟酸雨下铅锌冶炼废渣重金属的静态释放特征[J]. 中国环境科学, 2021, 41(12): 5755-5763. |
| YANG Andi, XIAO Xiyuan, GUO Zhaohui, et al. Static release characteristics of heavy metals from lead-zinc smelting slag leached by simulated acid rain[J]. China Environmental Science, 2021, 41(12): 5755-5763. | |
| [30] | 余磊, 谢益东, 季海冰, 等. 不同pH浸提条件对生活垃圾焚烧炉渣重金属浸出影响研究[J]. 环境科学与管理, 2016, 41(1): 111-114. |
| YU Lei, XIE Yidong, JI Haibing, et al. Leaching tests of domestic garbage slag heavy metals under different pH[J]. Environmental Science and Management, 2016, 41(1): 111-114. | |
| [31] | 马晶, 马玉龙, 朱莉, 等. 煤气化渣结构组成及其主要金属元素赋存形态[J]. 化工进展, 2024, 43(10): 5857-5866. |
| MA Jing, MA Yulong, ZHU Li, et al. Structure composition of coal gasification slag and speciation of main metals in coal gasification slag[J]. Chemical Industry and Engineering Progress, 2024, 43(10): 5857-5866. | |
| [32] | 王小燕, 肖细元, 郭朝晖, 等. 模拟酸雨淋溶条件下锌冶炼挥发窑渣重金属释放特征[J]. 矿冶工程, 2022, 42(6): 127-132. |
| WANG Xiaoyan, XIAO Xiyuan, GUO Zhaohui, et al. Release characteristics of heavy metals in zinc smelting slag from rotary kiln under eluviation with simulated acid rain[J]. Mining and Metallurgical Engineering, 2022, 42(6): 127-132. | |
| [33] | 段磊, 孙亚乔, 王晓冬, 等. 不同风化程度煤矸石中重金属释放及潜在生态风险[J]. 安全与环境学报, 2021, 21(2): 874-881. |
| DUAN Lei, SUN Yaqiao, WANG Xiaodong, et al. Potential ecological risks of heavy metals in the coal gangue and their release in different weathering degrees[J]. Journal of Safety and Environment, 2021, 21(2): 874-881. |
| [1] | 林已杰, 乔鹏, 李心睿, 张宏斌, 王雪芹. TiO2纳米光催化剂的异质结构建策略与应用研究进展[J]. 化工进展, 2025, 44(S1): 159-177. |
| [2] | 段先哲, 毕文婷, 李南, 豆佳乐, 邵冰清, 汪佳伟, 吴鹏, 黄欢, 唐振平. 数值模拟在高放废物处置中的应用:放射性核素迁移机制及其影响因素[J]. 化工进展, 2025, 44(9): 5391-5405. |
| [3] | 鲁玲, 俞磊, 顾霞, 赖敏明, 周凯, 王亚鹏, 李响. 制药废盐的高效热催化处理及资源化利用[J]. 化工进展, 2025, 44(9): 5432-5441. |
| [4] | 卢永琦, 肖嘉宁, 迭庆杞, 徐思琪, 黄瑞潇, 孔祥蕊, 杨玉飞. 堆存粉煤灰长期淋溶过程污染物释放特征与环境风险评估[J]. 化工进展, 2025, 44(9): 5479-5490. |
| [5] | 张嘉政, 毛岩鹏, 魏光朔, 逄栋杰, 徐剑, 董婧祎, 王旭江, 李敬伟, 王文龙. 煤气化渣替代水泥窑燃料的协同处理工艺[J]. 化工进展, 2025, 44(7): 4202-4211. |
| [6] | 马晶, 马玉龙, 朱莉, 乔松, 孙永刚, 吉文欣. 不同方法对煤气化粗渣中硅铝矿物的活化[J]. 化工进展, 2025, 44(7): 4251-4266. |
| [7] | 成韵, 周小力, 曹志强, 周杰, 董维亮, 姜岷. 基于LCA的废弃PET酶法解聚和碱性水解过程环境影响对比分析[J]. 化工进展, 2025, 44(5): 2788-2797. |
| [8] | 范晓娅, 赵镇, 彭强. 电催化二氧化碳和硝酸根共还原合成尿素研究进展[J]. 化工进展, 2025, 44(5): 2856-2869. |
| [9] | 宋坤莉, 肖雷, 马丹丹, 肖朋, 杨莎莎, 石建稳. 超低温氨气选择性脱硝催化剂的研究进展[J]. 化工进展, 2025, 44(4): 2028-2035. |
| [10] | 贺静, 郑娜, 徐丽, 沈素丹, 浦群, 房尔园, 介素云. 原子力显微镜红外光谱和化学成像的技术与应用[J]. 化工进展, 2025, 44(4): 2156-2171. |
| [11] | 牛经纬, 陈孝杨, 张健, 周育智, 陈敏. 活化过硫酸盐降解土壤典型环境内分泌干扰物[J]. 化工进展, 2025, 44(4): 2285-2296. |
| [12] | 赵凯强, 刘浩, 戴振华, 孙振峰, 杨超, 马诚. 植物油制备高硫聚合物的研究进展[J]. 化工进展, 2025, 44(3): 1454-1465. |
| [13] | 高文芳, 郭天玥, 高放, 于曼, 崔晗, 李华杰, 阎文艺, 吕龙义, 孙峙. 全球典型原材料资源关键性评价方法研究进展[J]. 化工进展, 2025, 44(3): 1619-1631. |
| [14] | 高嘉炜, 黄亚继, 王圣, 朱志成, 肖怡萱, 宋惠康, 刘俊, 祁帅杰, 张煜尧, 赵佳琪. 硅铝矿物组分对垃圾焚烧飞灰熔融特性与重金属固化的影响[J]. 化工进展, 2025, 44(3): 1716-1725. |
| [15] | 孙雅娟, 段思宇, 张宏, 周冬冬, 路广军, 马志斌. 化学外加剂对固废基胶凝材料性能及水化行为的影响[J]. 化工进展, 2025, 44(3): 1739-1748. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |