化工进展 ›› 2025, Vol. 44 ›› Issue (12): 7103-7116.DOI: 10.16085/j.issn.1000-6613.2024-2007
• 材料科学与技术 • 上一篇
段然1(
), 李印辉1, 傅钰1, 伍岳1, 陶春珲1, 唐羽丰1, 赵泽一1, 张罡2(
), 张文祥1, 马和平1(
)
收稿日期:2024-12-10
修回日期:2025-02-27
出版日期:2025-12-25
发布日期:2026-01-06
通讯作者:
张罡,马和平
作者简介:段然(2000—),男,硕士研究生,研究方向为碘及其化合物的吸附分离。E-mail: duanran80428673@stu.xjtu.edu.cn。
基金资助:
DUAN Ran1(
), LI Yinhui1, FU Yu1, WU Yue1, TAO Chunhui1, TANG Yufeng1, ZHAO Zeyi1, ZHANG Gang2(
), ZHANG Wenxiang1, MA Heping1(
)
Received:2024-12-10
Revised:2025-02-27
Online:2025-12-25
Published:2026-01-06
Contact:
ZHANG Gang, MA Heping
摘要:
放射性碘吸附是乏燃料后处理过程中不可或缺的环节。目前,固体吸附剂通常被应用于气态碘/碘甲烷的吸附研究,其中有机多孔聚合物因其可调节的吸附位点和高比表面积等优势被广泛关注。本文采用1-乙烯基咪唑和二乙烯苯(divinylbenzene,DVB)为共聚单体,通过调整致孔剂与单体比例,制备了几例具有微-介复合孔结构的有机多孔聚合物(porous organic polymers,POPs)。通过傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)、77K氮气吸附-脱附等温线测试深入分析了POPs材料的结构组成和孔道性质。借助静态吸附、动态吸附以及动态穿透等试验评价了POPs材料对碘(I₂)和碘甲烷(CH₃I)的吸附性能。结果表明,在致孔剂与单体摩尔比为2时所制备的样品(称为POP-VD2)不仅具有高的比表面积和丰富的微孔比例,而且对碘和碘甲烷的吸附性能最佳,分别达到3.10g/g和1.47g/g。POP-VD2对碘甲烷出色的吸附表现得益于其骨架结构中的咪唑能够与碘甲烷发生自发的季铵化反应,生成稳定的咪唑阳离子。此外,基于分子吸附能模拟和反应自由能计算结果也揭示了POP-VD2对碘和碘甲烷的吸附机理。本文为开发新型高性能低成本碘及碘甲烷吸附剂材料提供了潜在的解决方案。
中图分类号:
段然, 李印辉, 傅钰, 伍岳, 陶春珲, 唐羽丰, 赵泽一, 张罡, 张文祥, 马和平. 具有微-介复合孔结构的含咪唑有机多孔聚合物的制备及其碘/碘甲烷吸附性能[J]. 化工进展, 2025, 44(12): 7103-7116.
DUAN Ran, LI Yinhui, FU Yu, WU Yue, TAO Chunhui, TANG Yufeng, ZHAO Zeyi, ZHANG Gang, ZHANG Wenxiang, MA Heping. Preparation of imidazole-containing porous organic polymers with micro-mesoporous structure for iodine and iodomethane adsorption[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7103-7116.
| 实验 | 气体流量/mL·min-1 | |||
|---|---|---|---|---|
| 氦气 | 碘甲烷 | 氮气 | 水蒸气 | |
| 25℃,CH3I穿透 | 10.00 | 5.65 | 0 | 0 |
| 25℃,50%相对湿度,CH3I穿透 | 2.50 | 1.14 | 48.00 | 0.85 |
| 75℃,CH3I穿透 | 10.00 | 5.65 | 0 | 0 |
| 75℃,I2穿透 | 10.00 | 0 | 0 | 0 |
表1 穿透实验中流量参数设置
| 实验 | 气体流量/mL·min-1 | |||
|---|---|---|---|---|
| 氦气 | 碘甲烷 | 氮气 | 水蒸气 | |
| 25℃,CH3I穿透 | 10.00 | 5.65 | 0 | 0 |
| 25℃,50%相对湿度,CH3I穿透 | 2.50 | 1.14 | 48.00 | 0.85 |
| 75℃,CH3I穿透 | 10.00 | 5.65 | 0 | 0 |
| 75℃,I2穿透 | 10.00 | 0 | 0 | 0 |
| 样品编号 | 元素原子分数/% | ||
|---|---|---|---|
| N | C | H | |
| 0 | 6.744 | 84.108 | 6.665 |
| 1 | 7.304 | 83.260 | 6.675 |
| 2 | 9.804 | 78.249 | 6.674 |
| 3 | 8.047 | 82.118 | 6.830 |
| 4 | 7.087 | 83.476 | 6.715 |
| 5 | 6.598 | 84.154 | 6.749 |
表2 POP-VDx样品的元素分析数据
| 样品编号 | 元素原子分数/% | ||
|---|---|---|---|
| N | C | H | |
| 0 | 6.744 | 84.108 | 6.665 |
| 1 | 7.304 | 83.260 | 6.675 |
| 2 | 9.804 | 78.249 | 6.674 |
| 3 | 8.047 | 82.118 | 6.830 |
| 4 | 7.087 | 83.476 | 6.715 |
| 5 | 6.598 | 84.154 | 6.749 |
| 样品名称 | 碘甲烷吸附量 | 碘蒸气吸附量 | 参考文献 |
|---|---|---|---|
| POP-VD2 | 1.47g/g,75℃ | 3.10g/g,75℃ | 本文 |
| MFU-4l | 0.41g/g,150℃ | — | [ |
| SCU-20 | 1.84g/g,75℃ | — | [ |
| TPC-cPS | 1.57g/g,25℃ | — | [ |
| Ag-Tipe | 0.55g/g,75℃ | 3.31g/g,75℃ | [ |
| Zn-Vlm6 | — | 2.47g/g,75℃ | [ |
| TPTA-BD | 0.76g/g,75℃ | — | [ |
| Ag-ZSM-5 | 1.1g/g,90℃ | — | [ |
| SCU-COF-2 | 1.45g/g,75℃ | — | [ |
| HIL | 0.42g/g,75℃ | — | [ |
| MHP-P5Q | 0.8g/g,25℃ | — | [ |
| MIL-101-Cr-DMEDA | 0.8g/g,150℃ | — | [ |
| 1-Me-2-PhIn-P | — | 2.99g/g,75℃ | [ |
| PAF-24 | — | 2.76g/g,75℃ | [ |
| BDP-CPP-1 | — | 2.83g/g,75℃ | [ |
| NOP-54 | — | 2.02g/g,75℃ | [ |
| TPAPyH | — | 1.27g/g,70℃ | [ |
| PAF-1 | — | 1.86g/g,25℃ | [ |
| JUC-Z2 | — | 1.44g/g,25℃ | [ |
| HCPs-1 | — | 2.04g/g,75℃ | [ |
| HCPs-2 | — | 2.50g/g,75℃ | [ |
表3 国内外研究材料对碘和碘甲烷吸附性能对比
| 样品名称 | 碘甲烷吸附量 | 碘蒸气吸附量 | 参考文献 |
|---|---|---|---|
| POP-VD2 | 1.47g/g,75℃ | 3.10g/g,75℃ | 本文 |
| MFU-4l | 0.41g/g,150℃ | — | [ |
| SCU-20 | 1.84g/g,75℃ | — | [ |
| TPC-cPS | 1.57g/g,25℃ | — | [ |
| Ag-Tipe | 0.55g/g,75℃ | 3.31g/g,75℃ | [ |
| Zn-Vlm6 | — | 2.47g/g,75℃ | [ |
| TPTA-BD | 0.76g/g,75℃ | — | [ |
| Ag-ZSM-5 | 1.1g/g,90℃ | — | [ |
| SCU-COF-2 | 1.45g/g,75℃ | — | [ |
| HIL | 0.42g/g,75℃ | — | [ |
| MHP-P5Q | 0.8g/g,25℃ | — | [ |
| MIL-101-Cr-DMEDA | 0.8g/g,150℃ | — | [ |
| 1-Me-2-PhIn-P | — | 2.99g/g,75℃ | [ |
| PAF-24 | — | 2.76g/g,75℃ | [ |
| BDP-CPP-1 | — | 2.83g/g,75℃ | [ |
| NOP-54 | — | 2.02g/g,75℃ | [ |
| TPAPyH | — | 1.27g/g,70℃ | [ |
| PAF-1 | — | 1.86g/g,25℃ | [ |
| JUC-Z2 | — | 1.44g/g,25℃ | [ |
| HCPs-1 | — | 2.04g/g,75℃ | [ |
| HCPs-2 | — | 2.50g/g,75℃ | [ |
| 参数 | CH3I | POP-VD2 | 产物 | I- |
|---|---|---|---|---|
| Etotal/Hartree | -6960.342 | -1463.980 | -1503.760 | -6920.493 |
| Gtotal/kcal·mol-1 | 5.400 | 392.355 | 414.904 | -4342643.959 |
| ETcorr/kcal·mol-1 | -4367644.090 | -918261.000 | -94322.000 | -4342643.959 |
| ΔG/kcal·mol-1 | -10.860(-45.438kJ·mol-1) | |||
表4 分子热力学参数结果(T=75℃, P=100kPa)
| 参数 | CH3I | POP-VD2 | 产物 | I- |
|---|---|---|---|---|
| Etotal/Hartree | -6960.342 | -1463.980 | -1503.760 | -6920.493 |
| Gtotal/kcal·mol-1 | 5.400 | 392.355 | 414.904 | -4342643.959 |
| ETcorr/kcal·mol-1 | -4367644.090 | -918261.000 | -94322.000 | -4342643.959 |
| ΔG/kcal·mol-1 | -10.860(-45.438kJ·mol-1) | |||
| [1] | LIU Yujia, WANG Jiafeng, HU Xiaoping, et al. Radioiodine therapy in advanced differentiated thyroid cancer: Resistance and overcoming strategy[J]. Drug Resistance Updates, 2023, 68: 100939. |
| [2] | ROBBINS Jacob, SCHNEIDER Arthur B. Thyroid cancer following exposure to radioactive iodine[J]. Reviews in Endocrine and Metabolic Disorders, 2000, 1(3): 197-203. |
| [3] | HIROSE, Katsumi. 2011 Fukushima Dai-ichi nuclear power plant accident: Summary of regional radioactive deposition monitoring results[J]. Journal of Environmental Radioactivity, 2012, 111: 13-17. |
| [4] | SANYAOLU Olufunke Mary, MOURI Hassina, SELINUS Olle, et al. Sources, pathways, and health effects of iodine in the environment[M]. Practical applications of medical geology. Cham: Springer International Publishing, 2021: 565-613. |
| [5] | ZHANG Xiaoyuan, GU Ping, LI Xiaoyuan, et al. Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon[J]. Chemical Engineering Journal, 2017, 322: 129-139. |
| [6] | UMADEVI K, MANDAL D. Performance of radio-iodine discharge control methods of nuclear reprocessing plants[J]. Journal of Environmental Radioactivity, 2021, 234: 106623. |
| [7] | 叶明吕, 茅云, 唐静娟, 等. 动力堆核燃料后处理过程废气中碘的去除的研究——吸附放射性碘用的附银硅胶的制备和筛选[J]. 核技术, 1985, 8(2): 65-68. |
| YE Minglyu, MAO Yun, TANG Jingjuan, et al. Study on removal of radio-iodine from off-gases of nuclear fuel reprocessing of power reactor[J]. Nuclear Techniques, 1985, 8(2): 65-68. | |
| [8] | 黄晓春, 张杰鹏, 陈小明. [Zn(bim)2]·(H2O)(1.67): 具有方钠石拓扑结构的金属-有机敞开骨架[J]. 科学通报, 2003, 48(14): 1491-1494. |
| HUANG Xiaochun, ZHANG Jiepeng, CHEN Xiaoming. Zn(bim)2·(H2O)(1.67):Metal-organic open skeleton with sodalite topology[J].Chinese Science Bulletin, 2003, 48(14): 1491-1494. | |
| [9] | 陈俊畅, 张明星, 王殳凹. 晶态多孔材料合成方法的研究进展[J]. 化学学报, 2023, 81(2): 146-157. |
| CHEN Junchang, ZHANG Mingxing, WANG Shu’ao. Research progress of synthesis methods for crystalline porous materials[J]. Acta Chimica Sinica, 2023, 81(2): 146-157. | |
| [10] | 党璐童, 康永锋. 金属有机框架材料合成方法研究进展[J]. 化工新型材料, 2020, 48(10): 15-19, 24. |
| DANG Lutong, KANG Yongfeng. Research progress on MOFs synthesis method[J]. New Chemical Materials, 2020, 48(10): 15-19, 24. | |
| [11] | MA Juncheng, XU Shuangping, WANG Xintian, et al. Biomass derived porous carbon for efficient iodine adsorption from vapor and solution[J]. Separation and Purification Technology, 2024, 347: 127613. |
| [12] | Hubler T L, Snoeyink V L. Adsorption of iodine on silver-exchanged zeolites[J]. Industrial & Engineering Chemistry Research, 2005, 44(15): 5720-5726. |
| [13] | HEINITZ Stephan, MERMANS Jasper, MAERTENS Dominic, et al. Adsorption of radon on silver exchanged zeolites at ambient temperatures[J]. Scientific Reports, 2023, 13(1): 6811. |
| [14] | LU Shuangchun, LIU Qingling, HAN Rui, et al. Potential applications of porous organic polymers as adsorbent for the adsorption of volatile organic compounds[J]. Journal of Environmental Sciences, 2021, 105: 184-203. |
| [15] | AHMED Shakeel. Applications of advanced green materials[M]. Duxford: Woodhead Publishing, 2021: 681-703. |
| [16] | KURISINGAL Jintu Francis, YUN Hongryeol, HONG Chang Seop. Porous organic materials for iodine adsorption[J]. Journal of Hazardous Materials, 2023, 458: 131835. |
| [17] | NIU Tianhui, FENG Chenchen, YAO Chan, et al. Bisimidazole-based conjugated polymers for excellent iodine capture[J]. ACS Applied Polymer Materials, 2021, 3(1): 354-361. |
| [18] | YU Yanan, YIN Zheng, CAO Lihui, et al. Organic porous solid as promising iodine capture materials[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102(5): 395-427. |
| [19] | HE Linwei, CHEN Long, DONG Xinglong, et al. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide[J]. Chem, 2021, 7(3): 699-714. |
| [20] | ZHANG Yong, HONG Xin, CAO Xiaomei, et al. Functional porous organic polymers with conjugated triaryl triazine as the core for superfast adsorption removal of organic dyes[J]. ACS Applied Materials & Interfaces, 2021, 13(5): 6359-6366. |
| [21] | KAUR Parminder, HUPP Joseph T, NGUYEN SonBinh T. Porous organic polymers in catalysis: Opportunities and challenges[J]. ACS Catalysis, 2011, 1(7): 819-835. |
| [22] | NIKKHOO Elham, MALLAKPOUR Shadpour, HUSSAIN Chaudhery Mustansar. Design, synthesis, and application of covalent organic frameworks as catalysts[J]. New Journal of Chemistry, 2023, 47(14): 6765-6788. |
| [23] | YANG Jian, HU Shaojun, CAI Lixuan, et al. Counteranion-mediated efficient iodine capture in a hexacationic imidazolium organic cage enabled by multiple non-covalent interactions[J]. Nature Communications, 2023, 14(1): 6082. |
| [24] | Rachel E MOW, RUSSELL-PARKS Glory A, REDWINE Grace E B, et al. Polymer-coated covalent organic frameworks as porous liquids for gas storage[J]. Chemistry of Materials, 2024, 36(3): 1579-1590. |
| [25] | PAN Tingting, YANG Kaijie, DONG Xinglong, et al. Adsorption-based capture of iodine and organic iodides: Status and challenges[J]. Journal of Materials Chemistry A, 2023, 11(11): 5460-5475. |
| [26] | 王玲钰, 包良进. 放射性尾气中碘的净化处理研究进展[J]. 韩山师范学院学报, 2020, 41(6): 23-38. |
| WANG Lingyu, BAO Liangjin. Research progress on iodine removal from radioactive off-gases[J]. Journal of Hanshan Normal University, 2020, 41(6): 23-38. | |
| [27] | NAKAMOTO Kazuo. Infrared and Raman spectra of inorganic and coordination compounds[M]. 5th ed. New York: Wiley, 1997. |
| [28] | KRESGE C T, LEONOWICZ M E, ROTH W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359(6397): 710-712. |
| [29] | THOMMES Matthias, KANEKO Katsumi, NEIMARK Alexander V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2015, 87(9/10): 1051-1069. |
| [30] | ROUQUEROL Françoise, ROUQUEROL Jean, SING and Kenneth. Adsorption by powders and porous solids: Principles, methodology, and applications[M]. Second edition. San Diego: Academic Press, 1999. |
| [31] | Gérard FÉREY, SERRE Christian, Caroline MELLOT-DRAZNIEKS, et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction[J]. Angewandte Chemie International Edition, 2004, 43(46): 6296-6301. |
| [32] | SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619. |
| [33] | PAN Tingting, YANG Kaijie, DONG Xinglong, et al. Strategies for high-temperature methyl iodide capture in azolate-based metalorganic frameworks[J]. Nature Communications, 2024(15):26-30. |
| [34] | TAI Bo, LI Baoyu, HE Linwei, et al. Flexible interdigitated layered framework with multiple accessible active sites for high-performance CH3I capture[J]. Science China Chemistry, 2024, 67(5): 1569-1577. |
| [35] | WAN Haibo, XU Qingfeng, WU Jiacheng, et al. SuFEx-enabled elastic polysulfates for efficient removal of radioactive iodomethane and polar aprotic organics through weak intermolecular forces[J]. Angewandte Chemie International Edition, 2022, 61(33): e202208577. |
| [36] | 高昕. 咪唑基金属配位聚合物的制备及对碘的吸附研究[D]. 南昌: 南昌大学, 2023. |
| GAO Xin. Preparation of imidazole-based metal coordination polymer and its adsorption of iodine[D]. Nanchang: Nanchang University, 2023. | |
| [37] | 延恺萌. 富氮共价有机骨架的制备及其碘吸附性能研究[D]. 长春: 东北师范大学, 2023. |
| YAN Kaimeng. Preparation of nitrogen-rich covalent organic frameworks and study on their iodine adsorption properties. Changchun: Northeast Normal University, 2023. | |
| [38] | 于静文, 李忠, 武蒙蒙, 等. 吲哚基多孔有机聚合物对碘蒸气的吸附性能[J/OL]. 低碳化学与化工, 2025, 50(4): 90-97, 106. |
| YU Jingwen, LI Zhong, WU Mengmeng, et al. Iodine vapor adsorption performance of indole-based porous organic polymers[J/OL]. China Industrial Economics, 2025, 50(4): 90-97, 106. | |
| [39] | PHAM Tung Cao Thanh, DOCAO Son, HWANG In Chul, et al. Capture of iodine and organic iodides using silica zeolites and the semiconductor behaviour of iodine in a silica zeolite[J]. Energy & Environmental Science, 2016, 9(3): 1050-1062. |
| [40] | Kecheng JIE, ZHOU Yujuan, SUN Qi, et al. Mechanochemical synthesis of pillar[5]quinone derived multi-microporous organic polymers for radioactive organic iodide capture and storage[J]. Nature Communications, 2020,11(1): 1086. |
| [41] | LI Baiyan, DONG Xinglong, WANG Hao, et al. Functionalized metal organic frameworks for effective capture of radioactive organic iodides[J]. Faraday Discussions, 2017, 201: 47-61. |
| [42] | YAN Zhuojun, YUAN Ye, TIAN Yuyang, et al. Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites[J]. Angewandte Chemie International Edition, 2015, 54(43): 12733-12737. |
| [43] | ZHU Yunlong, JI Yajian, WANG Degao, et al. BODIPY-based conjugated porous polymers for highly efficient volatile iodine capture[J]. Journal of Materials Chemistry A, 2017, 5(14): 6622-6629. |
| [44] | CHEN Dongyang, FU Yu, YU Wenguang, et al. Versatile Adamantane-based porous polymers with enhanced microporosity for efficient CO2 capture and iodine removal[J]. Chemical Engineering Journal, 2018, 334: 900-906. |
| [45] | CHEN Yi, SONG Xiaojuan, LI Aisen, et al. Solvent-responsive nonporous adaptive crystals derived from pyridinium hydrochloride and the application in iodine adsorption[J]. Advanced Materials, 2024, 36(30): 2402885. |
| [46] | PEI Cuiying, Teng BEN, XU Shixian, et al. Ultrahigh iodine adsorption in porous organic[J]. Journal of Materials ChemistryA, 2014,2:7179-7187. |
| [47] | 李和国, 王立莹, 赵越, 等. 一类新型高效捕获碘蒸汽的低成本超交联微孔聚合物[J]. 兵器装备工程学报, 2021, 42(7): 269-273. |
| LI Heguo, WANG Liying, ZHAO Yue, et al. A kind of novel low-cost hypercrosslinked polymers with efficient lodine adsorption[J]. Journal of Ordnance Equipment Engineering, 2021, 42(7): 269-273. | |
| [48] | SOCRATES George. Infrared and Raman characteristic group frequencies: Tables and charts[M]. 3rd ed. Chichester: Wiley, 2001. |
| [49] | CORMA Avelino, GARCIA Hermenegildo. Lewis acids: From conventional homogeneous to green homogeneous and heterogeneous catalysis[J]. Chemical Reviews, 2003, 103(11): 4307-4365. |
| [50] | SMITH B C. Fundamentals of Fourier transform infrared spectroscopy[M]. 2nd ed. Boca Raton, FL: CRC Press, 2011 |
| [51] | BRUNAUER Stephen, EMMETT P H, TELLER Edward. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319. |
| [1] | 赵雨龙, 蔡凯, 于善青. 氧化铝孔结构对催化裂化烃类分子吸附扩散及反应性能的影响[J]. 化工进展, 2025, 44(S1): 213-221. |
| [2] | 王瑞琪, 刘浩伟, 孙彦丽, 李荣花, 王政, 吴玉花, 吴建波, 张慧, 白红存. 面向高效储氢MOFs的设计构筑与性能调控研究现状分析及展望[J]. 化工进展, 2025, 44(S1): 323-339. |
| [3] | 管思颖, 问金月, 焦守政, 郝雨薇, 孙志成. 染料敏化太阳能电池氧化还原电对[J]. 化工进展, 2025, 44(S1): 350-367. |
| [4] | 刘颖, 包成, 张欣欣. 用于氢气提纯的改性载铜活性炭[J]. 化工进展, 2025, 44(S1): 413-421. |
| [5] | 武锦怡, 赵睿恺, 邓帅, 张家麒, 高春霄, 刘葳桦, 赵力. 混合绝缘气体变温吸附分离回收SF6的数值模拟[J]. 化工进展, 2025, 44(S1): 19-28. |
| [6] | 孙梦圆, 陆诗建, 刘玲, 薛艳阳, 张云蓉, 董琦, 康国俊. 金属有机框架及衍生物在碳捕集领域的研究进展[J]. 化工进展, 2025, 44(9): 5339-5350. |
| [7] | 符红梅, 刘定华, 刘晓勤. MOF材料在芳烃同分异构体分离中的研究进展[J]. 化工进展, 2025, 44(9): 5006-5017. |
| [8] | 张文静, 黄致新, 李士腾, 邓帅, 李双俊. 生物质碳气凝胶CO2吸附剂研究进展[J]. 化工进展, 2025, 44(9): 5018-5032. |
| [9] | 杨证禄, 杨立峰, 路晓飞, 锁显, 张安运, 崔希利, 邢华斌. 机器学习加速多孔吸附剂筛选发现的研究进展[J]. 化工进展, 2025, 44(8): 4288-4301. |
| [10] | 杨勇, 张钊, 王东亮, 周怀荣, 赵子豪, 李煜坤. 二甲苯异构体不同分离策略的技术经济评价[J]. 化工进展, 2025, 44(8): 4732-4740. |
| [11] | 高姣姣, 颜诗宇, 杨太顺, 谢尚志, 杨艳娟, 徐晶. 不同晶型Al2O3负载Ru催化剂对聚乙烯氢解的影响[J]. 化工进展, 2025, 44(7): 3917-3927. |
| [12] | 梁书玮, 俞杰, 谢钟音, 裴鉴禄, 林中鑫, 陈泽翔. 共价有机框架吸附放射性气态碘的研究进展[J]. 化工进展, 2025, 44(7): 3965-3975. |
| [13] | 王影, 汤孟菲, 王莹, 张传芳, 张国杰, 刘俊, 赵钰琼. 碱金属催化煤热解制备CNT复合材料用于吸附罗丹明B[J]. 化工进展, 2025, 44(7): 3985-3996. |
| [14] | 赵保华, 刘晓娜, 胡彦云, 贾天聪, 谢强, 贺燕, 马相帅, 马双忱. 传统电吸附与流动电极电容去离子技术对比和发展趋势[J]. 化工进展, 2025, 44(7): 4101-4116. |
| [15] | 叶晓生, 袁婷, 贾鑫, 任庆霞. 多元复合纳米材料去除微囊藻毒素-LR研究进展[J]. 化工进展, 2025, 44(7): 4144-4157. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |