化工进展 ›› 2025, Vol. 44 ›› Issue (12): 6828-6839.DOI: 10.16085/j.issn.1000-6613.2024-1996
• 能源加工与技术 • 上一篇
收稿日期:2024-12-06
修回日期:2025-01-13
出版日期:2025-12-25
发布日期:2026-01-06
通讯作者:
孙文浩
作者简介:孙文浩(1995—),男,博士,工程师,研究方向为动力及储能电池测试评价技术。E-mail:563729367@qq.com。
基金资助:
SUN Wenhao(
), LIU Na, TIAN Jun, LIANG Xiaoqiang, ZHANG Kun, WANG Congjie
Received:2024-12-06
Revised:2025-01-13
Online:2025-12-25
Published:2026-01-06
Contact:
SUN Wenhao
摘要:
锂离子电池凭借其高能量密度、长循环寿命和显著的环境友好特性,广泛应用于各类创新技术与绿色能源解决方案之中。然而,锂离子电池热失控所带来的安全问题是阻碍其大规模应用的主要原因。通过探究和分析电池热失控的产气特性能够为电池热失控的风险评估以及早期预警提供有效指导。本文首先介绍了锂离子电池热失控过程的产气机理及气体检测方法,随后综述了近年来关于锂离子电池在不同滥用情况(热滥用、电滥用和机械滥用)下发生热失控的产气特性研究新进展,重点讨论了不同电极材料、荷电状态、能量密度、电池形状及环境条件对电池热失控产气关键参数包括产气时间、产气总量、气体组成、气体温度、气体毒性和气体燃爆风险的影响。最后,对锂离子电池的热失控产气特性、气体检测方法、电池结构设计以及安全预警等方面的未来研究方向进行了展望。
中图分类号:
孙文浩, 刘娜, 田君, 梁晓嫱, 张锟, 王聪杰. 锂离子电池热失控产气特性研究进展[J]. 化工进展, 2025, 44(12): 6828-6839.
SUN Wenhao, LIU Na, TIAN Jun, LIANG Xiaoqiang, ZHANG Kun, WANG Congjie. Research progress in gas generation characteristics during the thermal runaway of lithium-ion batteries[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 6828-6839.
| 正极材料 | 容量/Ah | SOC/% | LEL/% | 气氛 | 气体组成(体积分数)/% | 参考文献 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO | CO2 | CH4 | C2H4 | C2H6 | C4H10 | 其他C x H y | O2 | ||||||
| LFP | 23 | 100 | — | 氦气 | 36.2 | 7.4 | 25.2 | 6.4 | 15.2 | 2.4 | 1.3 | 0.7 | 1.5 | [ |
| NCM111 | 37 | 100 | — | 氦气 | 20.8 | 14.8 | 42.9 | 5.9 | 8.1 | 1.6 | 3.5 | 2.0 | 0.4 | [ |
| NCM523 | 50 | 100 | — | 氦气 | 20.2 | 21.3 | 38.0 | 7.5 | 7.1 | 1.6 | 2.4 | 1.6 | 0.3 | [ |
| NCM622 | 50 | 100 | — | 氦气 | 15.5 | 20.1 | 41.1 | 10.6 | 6.5 | 2.5 | 2.5 | 1.1 | 0.3 | [ |
| NCM811 | 53 | 100 | — | 氦气 | 16.1 | 25.7 | 34.4 | 17.4 | 1.2 | 4.0 | 0.6 | 0.4 | 0.4 | [ |
| LCO | 2.6 | 100 | — | 氮气 | 8.1 | 14.1 | 5.0 | — | — | — | — | 4.4 | — | [ |
| LCO | 2.6 | 100 | — | 空气 | 9.9 | 18.3 | 14.2 | — | — | — | — | 4.2 | — | [ |
| NCA | 3.35 | 100 | — | 氩气 | 26.1 | 44 | 17.5 | 8.9 | 2.7 | 0.9 | — | — | — | [ |
| LFP | 162 | 100 | 6 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM523 | 58 | 100 | 8.3 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM622 | 51 | 100 | 9 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM811+NCM523 | 78.5 | 100 | 11 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM523 | 40 | 50 | 14.2 | 空气 | 8.9 | 4.8 | 40.0 | 3.4 | 4.0 | 1.1 | — | 2.8 | — | [ |
| NCM523 | 40 | 75 | 11.0 | 空气 | 18.2 | 10.9 | 29.1 | 5.1 | 6.7 | 1.0 | — | 1.7 | — | [ |
| NCM523 | 40 | 100 | 10.0 | 空气 | 21.8 | 15.1 | 24.1 | 5.7 | 7.2 | 1.3 | — | 1.6 | — | [ |
| NCM523 | 40 | 115 | 9.0 | 空气 | 20.6 | 17.0 | 24.8 | 7.2 | 9.7 | 1.8 | — | 1.5 | — | [ |
表1 锂离子电池在不同情况下发生热失控的主要产气组成和LEL值
| 正极材料 | 容量/Ah | SOC/% | LEL/% | 气氛 | 气体组成(体积分数)/% | 参考文献 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| H2 | CO | CO2 | CH4 | C2H4 | C2H6 | C4H10 | 其他C x H y | O2 | ||||||
| LFP | 23 | 100 | — | 氦气 | 36.2 | 7.4 | 25.2 | 6.4 | 15.2 | 2.4 | 1.3 | 0.7 | 1.5 | [ |
| NCM111 | 37 | 100 | — | 氦气 | 20.8 | 14.8 | 42.9 | 5.9 | 8.1 | 1.6 | 3.5 | 2.0 | 0.4 | [ |
| NCM523 | 50 | 100 | — | 氦气 | 20.2 | 21.3 | 38.0 | 7.5 | 7.1 | 1.6 | 2.4 | 1.6 | 0.3 | [ |
| NCM622 | 50 | 100 | — | 氦气 | 15.5 | 20.1 | 41.1 | 10.6 | 6.5 | 2.5 | 2.5 | 1.1 | 0.3 | [ |
| NCM811 | 53 | 100 | — | 氦气 | 16.1 | 25.7 | 34.4 | 17.4 | 1.2 | 4.0 | 0.6 | 0.4 | 0.4 | [ |
| LCO | 2.6 | 100 | — | 氮气 | 8.1 | 14.1 | 5.0 | — | — | — | — | 4.4 | — | [ |
| LCO | 2.6 | 100 | — | 空气 | 9.9 | 18.3 | 14.2 | — | — | — | — | 4.2 | — | [ |
| NCA | 3.35 | 100 | — | 氩气 | 26.1 | 44 | 17.5 | 8.9 | 2.7 | 0.9 | — | — | — | [ |
| LFP | 162 | 100 | 6 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM523 | 58 | 100 | 8.3 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM622 | 51 | 100 | 9 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM811+NCM523 | 78.5 | 100 | 11 | 空气 | — | — | — | — | — | — | — | — | — | [ |
| NCM523 | 40 | 50 | 14.2 | 空气 | 8.9 | 4.8 | 40.0 | 3.4 | 4.0 | 1.1 | — | 2.8 | — | [ |
| NCM523 | 40 | 75 | 11.0 | 空气 | 18.2 | 10.9 | 29.1 | 5.1 | 6.7 | 1.0 | — | 1.7 | — | [ |
| NCM523 | 40 | 100 | 10.0 | 空气 | 21.8 | 15.1 | 24.1 | 5.7 | 7.2 | 1.3 | — | 1.6 | — | [ |
| NCM523 | 40 | 115 | 9.0 | 空气 | 20.6 | 17.0 | 24.8 | 7.2 | 9.7 | 1.8 | — | 1.5 | — | [ |
| [1] | WANG Weixuan, LI Chuanchang, ZENG Xiaoliang, et al. Application of polymer-based phase change materials in thermal safety management of power batteries[J]. Journal of Energy Storage, 2022, 55: 105646. |
| [2] | FENG Xuning, OUYANG Minggao, LIU Xiang, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[J]. Energy Storage Materials, 2018, 10: 246-267. |
| [3] | JIAQIANG E, XIAO Hanxu, TIAN Sicheng, et al. A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion[J]. Renewable Energy, 2024, 229: 120762. |
| [4] | TIAN Jiaqiang, FAN Yuan, PAN Tianhong, et al. A critical review on inconsistency mechanism, evaluation methods and improvement measures for lithium-ion battery energy storage systems[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113978. |
| [5] | ZHENG Yusheng, CHE Yunhong, HU Xiaosong, et al. Thermal state monitoring of lithium-ion batteries: Progress, challenges, and opportunities[J]. Progress in Energy and Combustion Science, 2024, 100: 101120. |
| [6] | HU Guangfang, HUANG Peifeng, BAI Zhonghao, et al. Comprehensively analysis the failure evolution and safety evaluation of automotive lithium ion battery[J]. eTransportation, 2021, 10: 100140. |
| [7] | LIAO Zhenghai, ZHANG Shen, LI Kang, et al. A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries[J]. Journal of Power Sources, 2019, 436: 226879. |
| [8] | MALLICK Soumyoraj, GAYEN Debabrata. Thermal behaviour and thermal runaway propagation in lithium-ion battery systems—A critical review[J]. Journal of Energy Storage, 2023, 62: 106894. |
| [9] | MCKERRACHER Rachel D, Jorge GUZMAN-GUEMEZ, WILLS Richard G A, et al. Advances in prevention of thermal runaway in lithium-ion batteries[J]. Advanced Energy and Sustainability Research, 2021, 2(5): 2000059. |
| [10] | SHAHID Seham, Martin AGELIN-CHAAB. A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries[J]. Energy Conversion and Management X, 2022, 16: 100310. |
| [11] | BUGRYNIEC Peter J, RESENDIZ Erik G, NWOPHOKE Solomon M, et al. Review of gas emissions from lithium-ion battery thermal runaway failure—Considering toxic and flammable compounds[J]. Journal of Energy Storage, 2024, 87: 111288. |
| [12] | WANG Ze, ZHU Lei, LIU Jianwei, et al. Gas sensing technology for the detection and early warning of battery thermal runaway: A review[J]. Energy & Fuels, 2022, 36(12): 6038-6057. |
| [13] | WANG Xiaoxue, LI Qiutong, ZHOU Xiaoyan, et al. Monitoring thermal runaway of lithium-ion batteries by means of gas sensors[J]. Sensors and Actuators B: Chemical, 2024, 411: 135703. |
| [14] | YANG Yu, WANG Renjie, SHEN Zhaojie, et al. Towards a safer lithium-ion batteries: A critical review on cause, characteristics, warning and disposal strategy for thermal runaway[J]. Advances in Applied Energy, 2023, 11: 100146. |
| [15] | WANG Kuo, OUYANG Dongxu, QIAN Xinming, et al. Early warning method and fire extinguishing technology of lithium-ion battery thermal runaway: A review[J]. Energies, 2023, 16(7): 2960. |
| [16] | JAGUEMONT Joris, Fanny BARDÉ. A critical review of lithium-ion battery safety testing and standards[J]. Applied Thermal Engineering, 2023, 231: 121014. |
| [17] | RANA Suraj, KUMAR Rajan, BHARJ Rabinder Singh. Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack[J]. Chemical Engineering Journal, 2023, 463: 142336. |
| [18] | ALKHEDHER Mohammad, TAHHAN Aghyad B. AL, YOUSAF Jawad, et al. Electrochemical and thermal modeling of lithium-ion batteries: A review of coupled approaches for improved thermal performance and safety lithium-ion batteries[J]. Journal of Energy Storage, 2024, 86: 111172. |
| [19] | FENG Xuning, REN Dongsheng, HE Xiangming, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770. |
| [20] | 刘昊东, 张鹏飞, 黄钰期. 三元锂电池热失控射流可视化及速度场测试[J]. 化工进展, 2024, 43(2): 703-712. |
| LIU Haodong, ZHANG Pengfei, HUANG Yuqi. Visualization and velocity field test of thermal runaway jet of ternary lithium battery[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 703-712. | |
| [21] | WANG Kuo, WU Dejian, CHANG Chongye, et al. Charging rate effect on overcharge-induced thermal runaway characteristics and gas venting behaviors for commercial lithium iron phosphate batteries[J]. Journal of Cleaner Production, 2024, 434: 139992. |
| [22] | QI Chuang, LIU Zhenyan, LIN Chunjing, et al. The gas production characteristics and catastrophic hazards evaluation of thermal runaway for LiNi0.5Co0.2Mn0.3O2 lithium-ion batteries under different SOCs[J]. Journal of Energy Storage, 2024, 88: 111678. |
| [23] | BERTILSSON Simon, LARSSON Fredrik, FURLANI Maurizio, et al. Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy[J]. Journal of Power Sources, 2017, 365: 446-455. |
| [24] | STURK David, ROSELL Lars, BLOMQVIST Per, et al. Analysis of Li-ion battery gases vented in an inert atmosphere thermal test chamber[J]. Batteries, 2019, 5(3): 61. |
| [25] | ZHANG Qingsong, LIU Tiantian, HAO Chaolong, et al. In situ Raman investigation on gas components and explosion risk of thermal runaway emission from lithium-ion battery[J]. Journal of Energy Storage, 2022, 56: 105905. |
| [26] | WAN Fu, LIU Qiang, KONG Weiping, et al. High-sensitivity lithium-ion battery thermal runaway gas detection based on fiber-enhanced Raman spectroscopy[J]. IEEE Sensors Journal, 2023, 23(7): 6849-6856. |
| [27] | ABD-EL-LATIF Abdelaziz A, SICHLER Peter, KASPER Michael, et al. Insights into thermal runaway of Li-ion cells by accelerating rate calorimetry coupled with external sensors and online gas analysis[J]. Batteries & Supercaps, 2021, 4(7): 1135-1144. |
| [28] | WEN Guodong, YUAN Shuai, DONG Zaizheng, et al. Recycling of spent lithium iron phosphate battery cathode materials: A review[J]. Journal of Cleaner Production, 2024, 474: 143625. |
| [29] | QIAN Feng, WANG Hewu, LI Minghai, et al. Thermal runaway vent gases from high-capacity energy storage LiFePO4 lithium iron[J]. Energies, 2023, 16(8): 3485. |
| [30] | WANG Shuping, SONG Laifeng, LI Changhao, et al. Experimental study of gas production and flame behavior induced by the thermal runaway of 280 Ah lithium iron phosphate battery[J]. Journal of Energy Storage, 2023, 74: 109368. |
| [31] | LIU Pengjie, LIU Chaoqun, YANG Kai, et al. Thermal runaway and fire behaviors of lithium iron phosphate battery induced by over heating[J]. Journal of Energy Storage, 2020, 31: 101714. |
| [32] | LIU Pengjie, LI Yongqi, MAO Binbin, et al. Experimental study on thermal runaway and fire behaviors of large format lithium iron phosphate battery[J]. Applied Thermal Engineering, 2021, 192: 116949. |
| [33] | GEHANDLER Jonatan. Road tunnel fire safety and risk: A review[J]. Fire Science Reviews, 2015, 4(1): 2. |
| [34] | MAO Binbin, LIU Chaoqun, YANG Kai, et al. Thermal runaway and fire behaviors of a 300 Ah lithium ion battery with LiFePO4 as cathode[J]. Renewable and Sustainable Energy Reviews, 2021, 139: 110717. |
| [35] | LIN Chunjing, YAN Hongtao, QI Chuang, et al. Thermal runaway and gas production characteristics of semi-solid electrolyte and liquid electrolyte lithium-Ion batteries: A comparative study[J]. Process Safety and Environmental Protection, 2024, 189: 577-586. |
| [36] | WU Qian, ZHANG Bing, LU Yingying. Progress and perspective of high-voltage lithium cobalt oxide in lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74: 283-308. |
| [37] | ZHANG Qingsong, NIU Jianghao, ZHAO Ziheng, et al. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states[J]. Journal of Energy Storage, 2022, 45: 103759. |
| [38] | LARSSON Fredrik, BERTILSSON Simon, FURLANI Maurizio, et al. Gas explosions and thermal runaways during external heating abuse of commercial lithium-ion graphite-LiCoO2 cells at different levels of ageing[J]. Journal of Power Sources, 2018, 373: 220-231. |
| [39] | YANG Yun, WANG Zhirong, GUO Pinkun, et al. Carbon oxides emissions from lithium-ion batteries under thermal runaway from measurements and predictive model[J]. Journal of Energy Storage, 2021, 33: 101863. |
| [40] | LIU Weizhe, ZHENG Zhiqiang, ZHANG Yukun, et al. Regeneration of LiNi x Co y Mn z O2 cathode materials from spent lithium-ion batteries: A review[J]. Journal of Alloys and Compounds, 2023, 963: 171130. |
| [41] | LI Yawen, JIANG Lihua, HUANG Zonghou, et al. Pressure effect on the thermal runaway behaviors of lithium-ion battery in confined space[J]. Fire Technology, 2023, 59(3): 1137-1155. |
| [42] | MAO Binbin, FEAR Conner, CHEN Haodong, et al. Experimental and modeling investigation on the gas generation dynamics of lithium-ion batteries during thermal runaway[J]. eTransportation, 2023, 15: 100212. |
| [43] | JIA Zhuangzhuang, QIN Peng, LI Zheng, et al. Analysis of gas release during the process of thermal runaway of lithium-ion batteries with three different cathode materials[J]. Journal of Energy Storage, 2022, 50: 104302. |
| [44] | PENG Yong, WANG Huaibin, JIN Changyong, et al. Thermal runaway induced gas hazard for cell-to-pack (CTP) lithium-ion battery pack[J]. Journal of Energy Storage, 2023, 72: 108324. |
| [45] | WEI Gang, HUANG Ranjun, ZHANG Guangxu, et al. A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards[J]. Applied Energy, 2023, 349: 121651. |
| [46] | XU Lejun, WANG Shilin, LI Yitong, et al. Thermal runaway propagation behavior and gas production characteristics of NCM622 battery modules at different state of charge[J]. Process Safety and Environmental Protection, 2024, 185: 267-276. |
| [47] | ZHANG Ying, WANG Hong, YU Hang, et al. Influence of cathode materials on the characteristics of lithium-ion battery gas generation during thermal runaway[J/OL]. Fire Technology, 2024. . |
| [48] | ZOU Kaiyu, HE Kun, LU Shouxiang. Venting composition and rate of large-format LiNi0.8Co0.1Mn0.1O2 pouch power battery during thermal runaway[J]. International Journal of Heat and Mass Transfer, 2022, 195: 123133. |
| [49] | ZHANG Qingsong, NIU Jianghao, YANG Juan, et al. In-situ explosion limit analysis and hazards research of vent gas from lithium-ion battery thermal runaway[J]. Journal of Energy Storage, 2022, 56: 106146. |
| [50] | SHI Chao, WANG Hewu, SHEN Hengjie, et al. Thermal runaway characteristics and gas analysis of LiNi0.9Co0.05Mn0.05O2 batteries[J]. Batteries, 2024, 10(3): 84. |
| [51] | YANG Xinwei, WANG Hewu, LI Minghai, et al. Experimental study on thermal runaway behavior of lithium-ion battery and analysis of combustible limit of gas production[J]. Batteries, 2022, 8(11): 250. |
| [52] | NUNES DE OLIVEIRA LIMA Anastássia Mariáh, ESPINOSA Denise Crocce Romano, BOTELHO JUNIOR Amilton Barbosa, et al. NCA-type lithium-ion battery: A review of separation and purification technologies for recycling metals[J]. Journal of Sustainable Metallurgy, 2024, 10(3): 1036-1050. |
| [53] | DOUGHTY Daniel H, ROTH E Peter. A general discussion of Li ion battery safety[J]. Electrochemical Society Interface, 2012, 21(2): 37. |
| [54] | GOLUBKOV Andrey W, SCHEIKL Sebastian, PLANTEU René, et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes-impact of state of charge and overcharge[J]. RSC Advances, 2015, 5(70): 57171-57186. |
| [55] | LI Weifeng, WANG Hewu, ZHANG Yajun, et al. Flammability characteristics of the battery vent gas: A case of NCA and LFP lithium-ion batteries during external heating abuse[J]. Journal of Energy Storage, 2019, 24: 100775. |
| [56] | 肖忠良, 池振振, 宋刘斌, 等. 动力锂离子电池仿真模型研究进展[J]. 化工进展, 2019, 38(8): 3604-3611. |
| XIAO Zhongliang, CHI Zhenzhen, SONG Liubin, et al. Progress of the simulation model for power lithium ion battery[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3604-3611. | |
| [57] | WEBER Niklas, SCHUHMANN Sebastian, Jens TÜBKE, et al. Chemical thermal runaway modeling of lithium-ion batteries for prediction of heat and gas generation[J]. Energy Technology, 2023, 11(10): 2300565. |
| [58] | WEBER Niklas, SCHUHMANN Sebastian, Robert LÖWE, et al. On the effect of gas generation on heat transfer during thermal runaway of pouch cells[J]. Energy Advances, 2024, 3(7): 1697-1709. |
| [59] | KIM Jinyong, MALLARAPU Anudeep, FINEGAN Donal P, et al. Modeling cell venting and gas-phase reactions in 18650 lithium ion batteries during thermal runaway[J]. Journal of Power Sources, 2021, 489: 229496. |
| [60] | YANG Mengjie, RONG Mingzhe, YE Yijun, et al. Comprehensive analysis of gas production for commercial LiFePO4 batteries during overcharge-thermal runaway[J]. Journal of Energy Storage, 2023, 72: 108323. |
| [61] | JIA Zhuangzhuang, WANG Shuping, QIN Peng, et al. Comparative investigation of the thermal runaway and gas venting behaviors of large-format LiFePO4 batteries caused by overcharging and overheating[J]. Journal of Energy Storage, 2023, 61: 106791. |
| [62] | GUO Qianzhen, LIU Shaoyan, ZHANG Jiabo, et al. Effects of charging rates on heat and gas generation in lithium-ion battery thermal runaway triggered by high temperature coupled with overcharge[J]. Journal of Power Sources, 2024, 600: 234237. |
| [63] | XIAO Yang, YANG Faqing, GAO Zhenhai, et al. Review of mechanical abuse related thermal runaway models of lithium-ion batteries at different scales[J]. Journal of Energy Storage, 2023, 64: 107145. |
| [64] | DIAZ Fabian, WANG Yufengnan, WEYHE Reiner, et al. Gas generation measurement and evaluation during mechanical processing and thermal treatment of spent Li-ion batteries[J]. Waste Management, 2019, 84: 102-111. |
| [65] | CHRISTENSEN P A, MILOJEVIC Z, WISE M S, et al. Thermal and mechanical abuse of electric vehicle pouch cell modules[J]. Applied Thermal Engineering, 2021, 189: 116623. |
| [66] | XU Chengshan, FAN Zhuwei, ZHANG Mengqi, et al. A comparative study of the venting gas of lithium-ion batteries during thermal runaway triggered by various methods[J]. Cell Reports Physical Science, 2023, 4(12): 101705. |
| [67] | SHEN Hengjie, WANG Hewu, LI Minghai, et al. Thermal runaway characteristics and gas composition analysis of lithium-ion batteries with different LFP and NCM cathode materials under inert atmosphere[J]. Electronics, 2023, 12(7): 1603. |
| [68] | NISAR Umair, MURALIDHARAN Nitin, ESSEHLI Rachid, et al. Valuation of surface coatings in high-energy density lithium-ion battery cathode materials[J]. Energy Storage Materials, 2021, 38: 309-328. |
| [69] | GOPINADH Sumol V, PHANENDRA Peddinti V R L, ANOOPKUMAR V,et al. Progress, challenges, and perspectives on alloy-based anode materials for lithium ion battery: A mini-review[J]. Energy & Fuels, 2024, 38(18): 17253-17277. |
| [70] | CAO Chencheng, ZHONG Yijun, SHAO Zongping. Electrolyte engineering for safer lithium-ion batteries: A review[J]. Chinese Journal of Chemistry, 2023, 41(9): 1119-1141. |
| [71] | 王特, 蒋立, 田晓录, 等. 锂离子电池安全材料的研究进展[J]. 化工进展, 2021, 40(6): 3132-3142. |
| WANG Te, JIANG Li, TIAN Xiaolu, et al. Research progress of lithium ion batteries safety materials[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3132-3142. | |
| [72] | 胡华坤, 薛文东, 蒋朋, 等. 锂离子电池安全添加剂的研究进展[J]. 化工进展, 2022, 41(10): 5441-5455. |
| HU Huakun, XUE Wendong, JIANG Peng, et al. Research progress of safety additives for lithium ion batteries[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5441-5455. | |
| [73] | BAUSCH Bruno, FRANKL Sebastian, BECHER Daniel, et al. Naturally-derived thermal barrier based on fiber-reinforced hydrogel for the prevention of thermal runaway propagation in high-energetic lithium-ion battery packs[J]. Journal of Energy Storage, 2023, 61: 106841. |
| [74] | WANG Huaibin, XU Hui, ZHANG Zelin, et al. Fire and explosion characteristics of vent gas from lithium-ion batteries after thermal runaway: A comparative study[J]. eTransportation, 2022, 13: 100190. |
| [1] | 付元鹏, 董宪姝, 马晓敏, 樊玉萍. 液相溶胶-凝胶法LiNi1/3Co1/3Mn1/3O2三元电极材料的再生及电化学性能[J]. 化工进展, 2025, 44(6): 3561-3569. |
| [2] | 张舒茜, 陈佩婷, 蒲建波, 王宇作, 阮殿波, 乔志军. 进风量对硅/碳负极材料二次颗粒尺寸及电化学性能的影响[J]. 化工进展, 2025, 44(4): 2196-2201. |
| [3] | 徐美玲, 汪宇, 邹娜, 姜会, 何美琪, 李风海, 邱介山. 基于聚四氟乙烯的干法电极性能[J]. 化工进展, 2025, 44(4): 2020-2027. |
| [4] | 胡志林, 白瑞兵, 谢天昊, 郑海鑫. 双氟磺酰亚胺盐的合成研究进展[J]. 化工进展, 2025, 44(12): 6813-6827. |
| [5] | 梁宏成, 赵冬妮, 权银, 李敬妮, 胡欣怡. SEI膜形貌与结构对锂离子电池性能的影响[J]. 化工进展, 2024, 43(9): 5049-5062. |
| [6] | 吴剑扬, 王汝娜, 陈耀, 申兰耀, 于永利, 蒋宁, 邱景义, 周恒辉. 锂离子电池高镍正极材料前体的制备工艺[J]. 化工进展, 2024, 43(9): 5079-5085. |
| [7] | 李红彦, 谢书涵, 张燕如, 王永净, 王永好, 吕源财, 林春香, 李小娟. 废旧锂离子电池正极材料直接再生技术研究进展[J]. 化工进展, 2024, 43(9): 5207-5216. |
| [8] | 黎伟杰, 路蕾蕾, 李得科, 王春航, 张祖铭, 谭强. 锂离子电池拆解回收技术及进展[J]. 化工进展, 2024, 43(8): 4601-4613. |
| [9] | 潘涵婷, 徐洪涛, 许多, 罗祝清. 低温条件下基于相变材料的锂离子电池保温特性分析[J]. 化工进展, 2024, 43(8): 4333-4341. |
| [10] | 陈良, 罗冬梅, 王正豪, 钟山, 唐思扬, 梁斌. 工业副产气化学链回收氢气技术研究进展[J]. 化工进展, 2024, 43(7): 3729-3746. |
| [11] | 孙悦, 邢宝林, 张耀杰, 冯来宏, 曾会会, 蒋振东, 徐冰, 贾建波, 张传祥, 谌伦建, 张越, 张文豪. B掺杂多孔碳纳米片的制备及其储锂性能[J]. 化工进展, 2024, 43(6): 3209-3220. |
| [12] | 周铭贤, 叶小舟. 废锂离子电池碳热还原优先提锂工艺优化[J]. 化工进展, 2024, 43(4): 2174-2182. |
| [13] | 刘世达, 王海燕, 侯栓弟, 刘忠生, 廖昌建, 王宽岭. 我国石化储罐VOCs安全高效深度减排、回收和热氧化技术进展[J]. 化工进展, 2024, 43(4): 2063-2076. |
| [14] | 楚振普, 陈禹蒙, 李俊国, 孙庆轩, 刘科. 废旧锂离子电池负极石墨循环再生的研究进展[J]. 化工进展, 2024, 43(3): 1524-1534. |
| [15] | 吴剑扬, 申兰耀, 于永利, 王汝娜, 蒋宁, 杨新河, 邱景义, 周恒辉. 锂离子电池高镍正极材料的制备及性能优化[J]. 化工进展, 2024, 43(3): 1387-1394. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |