| [1] |
高丽, 陈静, 郑嘉雯, 等. 极端天气的数值模式集合预报研究进展[J]. 地球科学进展, 2019, 34(7): 706-716.
|
|
GAO Li, CHEN Jing, ZHENG Jiawen,et al. Progress in researches on ensemble forecasting of extreme weather based on numerical models[J]. Advances in Earth Science, 2019, 34(7): 706-716.
|
| [2] |
宗海锋, 布和朝鲁, 彭京备, 等. 中国南方大范围持续性低温、雨雪和冰冻组合性灾害事件:客观识别方法及关键特征[J]. 大气科学, 2022, 46(5): 1055-1070.
|
|
ZONG Haifeng, BUEH Cholaw, PENG Jingbei, et al. Combined disaster events of extensive and persistent low temperatures, rain/snow, and freezing in Southern China: Objective identification and key features[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(5): 1055-1070.
|
| [3] |
张芳华, 许先煌, 权婉晴, 等. 2024年春运期两次极端雨雪冰冻天气过程对比分析[J]. 暴雨灾害, 2024, 43(4):371-383.
|
|
ZHANG Fanghua, XU Xianhuang, QUAN Wanqing, et al. Comparison of two extreme rainfall/snowfall and freezing weather events during the Spring Festival transportation period in 2024[J]. Torrential Rain and Disasters, 2024, 43(4): 371-383.
|
| [4] |
郭猛, 蔡晓晓, 王京京, 等. 道路融雪除冰技术生命周期内环境负荷分析[J]. 中国公路学报, 2024, 37(9): 186-196.
|
|
GUO Meng, CAI Xiaoxiao, WANG Jingjing, et al. Analysis of environmental load during the life cycle of road snow melting and deicing technology[J]. China Journal of Highway and Transport, 2024, 37(9): 186-196.
|
| [5] |
谭忆秋, 张驰, 徐慧宁, 等. 主动除冰雪路面融雪化冰特性及路用性能研究综述[J]. 中国公路学报, 2019, 32(4): 1-17.
|
|
TAN Yiqiu, ZHANG Chi, XU Huining, et al. Snow melting and deicing characteristics and pavement performance of active deicing and snow melting pavement[J]. China Journal of Highway and Transport, 2019, 32(4): 1-17.
|
| [6] |
TERRY Leigh G, CONAWAY Katharine, REBAR Joyce, et al. Alternative deicers for winter road maintenance—A review[J]. Water, Air, & Soil Pollution, 2020, 231(8): 394.
|
| [7] |
LIU Xiaoming, ZHAO Yu, LIU Weizheng, et al. Microwave heating and deicing efficiency for asphalt concrete with SiC-Fe3O4 microwave enhanced functional layer[J]. Journal of Cleaner Production, 2022, 332: 130111.
|
| [8] |
关明慧, 徐宇工, 卢太金, 等. 微波加热技术在清除道路积冰中的应用[J]. 北方交通大学学报, 2003, 27(4): 79-83.
|
|
GUAN Minghui, XU Yugong, LU Taijin, et al. Application of microwave heating on removing ice on streets[J]. Journal of Northern Jiaotong University, 2003, 27(4): 79-83.
|
| [9] |
高杰, 张正伟, 韩振强, 等. 电磁波吸收材料用于微波融冰雪路面的研究进展[J]. 材料导报, 2016, 30(23): 87-95.
|
|
GAO Jie, ZHANG Zhengwei, HAN Zhenqiang, et al. A review of electromagnetic wave absorbing materials used in microwave deicing pavement[J]. Materials Review, 2016, 30(23): 87-95.
|
| [10] |
赵静, 王选仓, 辛磊, 等. 用于微波除冰的吸波骨料选择及路面吸波功能层设计[J]. 材料导报, 2024, 38(12): 86-93.
|
|
ZHAO Jing, WANG Xuancang, XIN Lei, et al. Optimization of absorbing aggregates for microwave deicing and design of concrete pavement absorbing functional layer[J]. Materials Reports, 2024, 38(12): 86-93.
|
| [11] |
LIU Junliang, XU Jinyu, LU Song, et al. Investigation on dielectric properties and microwave heating efficiencies of various concrete pavements during microwave deicing[J]. Construction and Building Materials, 2019, 225: 55-66.
|
| [12] |
AMALINA Farah, RAZAK Abdul Syukor ABD, ZULARISAM A W, et al. Comprehensive assessment of biochar integration in agricultural soil conditioning: Advantages, drawbacks, and future prospects[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2023, 132: 103508.
|
| [13] |
RAVINDIRAN Gokulan, RAJAMANICKAM Sivarethinamohan, JANARDHAN Gorti, et al. Production and modifications of biochar to engineered materials and its application for environmental sustainability: A review[J]. Biochar, 2024, 6(1): 62.
|
| [14] |
WANG Kaiming, GONG Xin, YE Xinyu, et al. Dielectric gene engineering on biochar for ultrawide-band microwave absorption with a rational double-layer design[J]. Carbon, 2024, 228: 119326.
|
| [15] |
FAN Xing, LI Boyu, ZI Wenhua, et al. Microwave dielectric characterization and loss mechanism of biowaste during pyrolysis[J]. Energy Conversion and Management, 2024, 301: 118075.
|
| [16] |
ADHIKARI Sirjana, MOON Ellen, Jorge PAZ-FERREIRO, et al. Comparative analysis of biochar carbon stability methods and implications for carbon credits[J]. Science of the Total Environment, 2024, 914: 169607.
|
| [17] |
MALJAEE Hamid, MADADI Rozita, PAIVA Helena, et al. Incorporation of biochar in cementitious materials: A roadmap of biochar selection[J]. Construction and Building Materials, 2021, 283: 122757.
|
| [18] |
LIN Junhao, SUN Shichang, XU Donghua, et al. Microwave directional pyrolysis and heat transfer mechanisms based on multiphysics field stimulation: Design porous biochar structure via controlling hotspots formation[J]. Chemical Engineering Journal, 2022, 429: 132195.
|
| [19] |
方琳. 微波能作用下污泥脱水和高温热解的效能与机制[D]. 哈尔滨: 哈尔滨工业大学, 2007.
|
|
FANG Lin. Efficiency and mechanism of sewage sludge dewatering and pyrolysis under treatment of microwave energy[D]. Harbin: Harbin Institute of Technology, 2007.
|
| [20] |
WANG Wenlong, WANG Biao, SUN Jing, et al. Numerical simulation of hot-spot effects in microwave heating due to the existence of strong microwave-absorbing media[J]. RSC Advances, 2016, 6(58): 52974-52981.
|
| [21] |
王超前, 王文龙, 李哲, 等. 基于微波诱导定向加热的污泥新型热解方法能耗分析[J]. 化工学报, 2019, 70(S1): 168-176.
|
|
WANG Chaoqian, WANG Wenlong, LI Zhe, et al. Energy consumption analysis of novel pyrolysis method of sewage sludge based on microwave-induced target-oriented heating[J]. CIESC Journal, 2019, 70(S1): 168-176.
|
| [22] |
WANG Chaoqian, WANG Wenlong, LIN Leteng, et al. A stepwise microwave synergistic pyrolysis approach to produce sludge-based biochars: Feasibility study simulated by laboratory experiments[J]. Fuel, 2020, 272: 117628.
|
| [23] |
LI Sheng, ZHANG Yimin, YUAN Yizhong, et al. Enhancing vanadium extraction from shale by microwave irradiation for VBS grindability improvement: Hot spots and thermal stress[J]. Chemical Engineering and Processing-Process Intensification, 2023, 193: 109568.
|
| [24] |
CHAIX Jean-Marc, BOUCHET Renaud, BOUVARD Didier, et al. A viewpoint on hot spots in microwave sintering and flash sintering[J]. Advanced Engineering Materials, 2023, 25(18): 2201742.
|
| [25] |
ANTUNES Elsa, JACOB Mohan V, BRODIE Graham, et al. Microwave pyrolysis of sewage biosolids: Dielectric properties, microwave susceptor role and its impact on biochar properties[J]. Journal of Analytical and Applied Pyrolysis, 2018, 129: 93-100.
|
| [26] |
ZHOU Ruolan, TIAN Xiaojie, WANG Xiaofei, et al. Microwave pyrolysis of Choerospondias axillaris seeds with their derived biochar for comprehensive utilization of the biomass[J]. Chemical Engineering Journal, 2024, 501: 157727.
|
| [27] |
SALEMA Arshad Adam, Farid Nasir ANI, MOURIS Joe, et al. Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process[J]. Fuel Processing Technology, 2017, 166: 164-173.
|
| [28] |
黄彪, 陈学榕, 江茂生, 等. 不同炭化条件下炭化物的结构与性能表征[J]. 光谱学与光谱分析, 2006, 26(3): 455-459.
|
|
HUANG Biao, CHEN Xuerong, JIANG Maosheng, et al. Structural and property characteristics of Chinese fir wood charcoal prepared under various conditions[J]. Spectroscopy and Spectral Analysis, 2006, 26(3): 455-459.
|
| [29] |
ZHANG Zhikun, ZHU Zongyuan, SHEN Boxiong, et al. Insights into biochar and hydrochar production and applications: A review[J]. Energy, 2019, 171: 581-598.
|
| [30] |
GERDROODBAR Amirhossein Enayati, KARIMKHANI Vahid, DASHTIMOGHADAM Erfan, et al. Vitrimerization as a bridge of chemical and mechanical recycling[J]. Journal of Environmental Chemical Engineering, 2024, 12(3): 112897.
|
| [31] |
杨彪, 曾德明, 倪瑞璞, 等. 基于新型广义离散趋近律的微波加热温度控制[J]. 控制工程, 2023, 30(7): 1259-1266.
|
|
YANG Biao, ZENG Deming, NI Ruipu, et al. Temperature control of microwave heating based on new generalized discrete reaching law[J]. Control Engineering of China, 2023, 30(7): 1259-1266.
|
| [32] |
LI Kangqiang, CHEN Jin, CHEN Guo, et al. Microwave dielectric properties and thermochemical characteristics of the mixtures of walnut shell and manganese ore[J]. Bioresource Technology, 2019, 286: 121381.
|
| [33] |
何春林. 典型冶金原辅料的微波吸收特性及其应用研究[D]. 南宁: 广西大学, 2016.
|
|
HE Chunlin. Study on microwave absorption characteristics of typical metallurgical raw material and its application[D]. Nanning: Guangxi University, 2016.
|
| [34] |
GENG Haibin, WANG Huijuan, LI Xiaoke, et al. An orthogonal test study on the preparation of self-compacting underwater non-dispersible concrete[J]. Materials, 2023, 16(19): 6599.
|
| [35] |
JIA Yufan, ZHU Xianglong, YANG Lei, et al. Modeling and experimental study on material removal rate of quartz wafer by fixed abrasive lapping[J]. Optics and Precision Engineering, 2023, 31(16): 2362-2371.
|
| [36] |
ALLENDE Scarlett, BRODIE Graham, JACOB Mohan V. Breakdown of biomass for energy applications using microwave pyrolysis: A technological review[J]. Environmental Research, 2023, 226: 115619.
|
| [37] |
DAMEZ Romain, ARTILLAN Philippe, HELLOUIN DE MENIBUS Arthur, et al. Effect of water content on microwave dielectric properties of building materials[J]. Construction and Building Materials, 2020, 263: 120107.
|
| [38] |
WANG Hao, KANG Haitao, WANG Zhen, et al. Waste leaves into biomass carbon materials with tunable oxygen-containing functional groups for microwave absorption[J]. Carbon, 2025, 234: 119930.
|