化工进展 ›› 2025, Vol. 44 ›› Issue (12): 7238-7249.DOI: 10.16085/j.issn.1000-6613.2024-1837
• 资源与环境化工 • 上一篇
赵晗蕾1(
), 范峥1(
), 李志潇2, 革晓东2, 胡科先3, 万征平3, 韩洁4
收稿日期:2024-11-10
修回日期:2025-05-26
出版日期:2025-12-25
发布日期:2026-01-06
通讯作者:
范峥
作者简介:赵晗蕾(2000—),男,硕士研究生,研究方向为压裂返排液处理。E-mail:22212071148@stumail.xsyu.edu.cn。
基金资助:
ZHAO Hanlei1(
), FAN Zheng1(
), LI Zhixiao2, GE Xiaodong2, HU Kexian3, WAN Zhengping3, HAN Jie4
Received:2024-11-10
Revised:2025-05-26
Online:2025-12-25
Published:2026-01-06
Contact:
FAN Zheng
摘要:
为探究微电解工艺处理压裂返排液的效能,需明确关键参数对污染物去除的影响并优化预处理技术路径。本文首先通过单因素实验考察反应时间、初始pH、曝气量和微电解材料加量对废水黏度及化学需氧量(COD)去除率的影响;继而利用响应面设计优化工艺参数,拟合COD去除率和降黏率的二阶响应模型;最后采用改进的多目标蝗虫优化算法(MOGOA)优化参数并验证效果。结果显示,改进算法能获得Pareto最优解,优化后参数为初始pH=2.3、曝气量2.3L/min、材料加量76g/L、反应时间73min。在此条件下,COD去除率65.92%、降黏率56.42%,与预测值误差小于2%,验证了模型可行性,该条件下氯离子、溴离子去除率分别为31.60%、26.53%。本文构建的“响应面模型-算法优化”体系提升了参数优化的精准度与效率,为压裂返排液预处理提供了可量化方案,相关方法对同类工艺优化具借鉴价值。
中图分类号:
赵晗蕾, 范峥, 李志潇, 革晓东, 胡科先, 万征平, 韩洁. 基于改进MOGOA的微电解预处理压裂返排液优化[J]. 化工进展, 2025, 44(12): 7238-7249.
ZHAO Hanlei, FAN Zheng, LI Zhixiao, GE Xiaodong, HU Kexian, WAN Zhengping, HAN Jie. Optimization of micro-electrolysis pretreatment for fracturing flowback fluids based on improved MOGOA[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7238-7249.
| 指标 | 数值 |
|---|---|
| Ca2+/mg·L-1 | 564.52 |
| Mg2+/mg·L-1 | 157.14 |
| Cl-/mg·L-1 | 22856.96 |
| Br-/mg·L-1 | 84.56 |
| CO32-/mg·L-1 | 未检出 |
| HCO3-/mg·L-1 | 462.99 |
| 黏度/mPa·s | 7.32 |
表1 压裂返排液检测一览表
| 指标 | 数值 |
|---|---|
| Ca2+/mg·L-1 | 564.52 |
| Mg2+/mg·L-1 | 157.14 |
| Cl-/mg·L-1 | 22856.96 |
| Br-/mg·L-1 | 84.56 |
| CO32-/mg·L-1 | 未检出 |
| HCO3-/mg·L-1 | 462.99 |
| 黏度/mPa·s | 7.32 |
| 水平编码 | 因素 | |||
|---|---|---|---|---|
| pH(A) | 曝气量(B)/L·min–1 | 微电解材料加量(C)/g·L–1 | 反应时间(D)/min | |
| -1 | 2 | 1.5 | 60 | 40 |
| 0 | 3 | 2.0 | 80 | 60 |
| 1 | 4 | 2.5 | 100 | 80 |
表2 响应面因子水平编码
| 水平编码 | 因素 | |||
|---|---|---|---|---|
| pH(A) | 曝气量(B)/L·min–1 | 微电解材料加量(C)/g·L–1 | 反应时间(D)/min | |
| -1 | 2 | 1.5 | 60 | 40 |
| 0 | 3 | 2.0 | 80 | 60 |
| 1 | 4 | 2.5 | 100 | 80 |
| 序号 | pH | 曝气量/L·min–1 | 微电解材料加量/g·L–1 | 反应时间/min | COD去除率/% | 降黏率/% |
|---|---|---|---|---|---|---|
| 1 | 3 | 2 | 80 | 60 | 80.66 | 68.51 |
| 2 | 3 | 2.5 | 60 | 60 | 75.14 | 69.21 |
| 3 | 4 | 2 | 100 | 60 | 58.98 | 46.35 |
| 4 | 4 | 2 | 80 | 40 | 56.09 | 44.76 |
| 5 | 3 | 2.5 | 80 | 40 | 75.55 | 67.03 |
| 6 | 4 | 2.5 | 80 | 60 | 56.24 | 51.95 |
| 7 | 2 | 2 | 60 | 60 | 60.20 | 68.58 |
| 8 | 3 | 2 | 100 | 80 | 81.82 | 69.79 |
| 9 | 3 | 2 | 100 | 40 | 80.99 | 67.98 |
| 10 | 3 | 1.5 | 60 | 60 | 71.19 | 61.50 |
| 11 | 4 | 1.5 | 80 | 60 | 52.49 | 43.93 |
| 12 | 4 | 2 | 60 | 60 | 54.17 | 45.02 |
| 13 | 3 | 2 | 80 | 60 | 80.62 | 69.86 |
| 14 | 3 | 1.5 | 80 | 40 | 70.96 | 60.72 |
| 15 | 3 | 2.5 | 100 | 60 | 76.76 | 68.89 |
| 16 | 3 | 2.5 | 80 | 80 | 75.93 | 69.05 |
| 17 | 3 | 2 | 60 | 80 | 78.54 | 68.86 |
| 18 | 2 | 2.5 | 80 | 60 | 59.59 | 72.33 |
| 19 | 4 | 2 | 80 | 80 | 57.12 | 46.93 |
| 20 | 2 | 2 | 80 | 40 | 61.66 | 67.70 |
| 21 | 3 | 2 | 80 | 60 | 81.59 | 71.32 |
| 22 | 2 | 1.5 | 80 | 60 | 57.82 | 68.15 |
| 23 | 2 | 2 | 80 | 80 | 65.04 | 71.10 |
| 24 | 3 | 2 | 80 | 60 | 81.58 | 70.55 |
| 25 | 3 | 1.5 | 100 | 60 | 72.85 | 62.15 |
| 26 | 3 | 2 | 60 | 40 | 77.55 | 66.03 |
| 27 | 3 | 2 | 80 | 60 | 79.85 | 70.16 |
| 28 | 3 | 1.5 | 80 | 80 | 73.03 | 62.83 |
| 29 | 2 | 2 | 100 | 60 | 66.37 | 71.82 |
表3 响应面实验设计及结果
| 序号 | pH | 曝气量/L·min–1 | 微电解材料加量/g·L–1 | 反应时间/min | COD去除率/% | 降黏率/% |
|---|---|---|---|---|---|---|
| 1 | 3 | 2 | 80 | 60 | 80.66 | 68.51 |
| 2 | 3 | 2.5 | 60 | 60 | 75.14 | 69.21 |
| 3 | 4 | 2 | 100 | 60 | 58.98 | 46.35 |
| 4 | 4 | 2 | 80 | 40 | 56.09 | 44.76 |
| 5 | 3 | 2.5 | 80 | 40 | 75.55 | 67.03 |
| 6 | 4 | 2.5 | 80 | 60 | 56.24 | 51.95 |
| 7 | 2 | 2 | 60 | 60 | 60.20 | 68.58 |
| 8 | 3 | 2 | 100 | 80 | 81.82 | 69.79 |
| 9 | 3 | 2 | 100 | 40 | 80.99 | 67.98 |
| 10 | 3 | 1.5 | 60 | 60 | 71.19 | 61.50 |
| 11 | 4 | 1.5 | 80 | 60 | 52.49 | 43.93 |
| 12 | 4 | 2 | 60 | 60 | 54.17 | 45.02 |
| 13 | 3 | 2 | 80 | 60 | 80.62 | 69.86 |
| 14 | 3 | 1.5 | 80 | 40 | 70.96 | 60.72 |
| 15 | 3 | 2.5 | 100 | 60 | 76.76 | 68.89 |
| 16 | 3 | 2.5 | 80 | 80 | 75.93 | 69.05 |
| 17 | 3 | 2 | 60 | 80 | 78.54 | 68.86 |
| 18 | 2 | 2.5 | 80 | 60 | 59.59 | 72.33 |
| 19 | 4 | 2 | 80 | 80 | 57.12 | 46.93 |
| 20 | 2 | 2 | 80 | 40 | 61.66 | 67.70 |
| 21 | 3 | 2 | 80 | 60 | 81.59 | 71.32 |
| 22 | 2 | 1.5 | 80 | 60 | 57.82 | 68.15 |
| 23 | 2 | 2 | 80 | 80 | 65.04 | 71.10 |
| 24 | 3 | 2 | 80 | 60 | 81.58 | 70.55 |
| 25 | 3 | 1.5 | 100 | 60 | 72.85 | 62.15 |
| 26 | 3 | 2 | 60 | 40 | 77.55 | 66.03 |
| 27 | 3 | 2 | 80 | 60 | 79.85 | 70.16 |
| 28 | 3 | 1.5 | 80 | 80 | 73.03 | 62.83 |
| 29 | 2 | 2 | 100 | 60 | 66.37 | 71.82 |
| 来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 2801.6 | 14 | 200.11 | 123.36 | <0.0001 | * |
| A | 105.55 | 1 | 105.55 | 65.07 | <0.0001 | * |
| B | 36.32 | 1 | 36.32 | 22.39 | 0.0003 | * |
| C | 36.74 | 1 | 36.74 | 22.65 | 0.0003 | * |
| D | 6.29 | 1 | 6.29 | 3.88 | 0.0691 | |
| AB | 0.9716 | 1 | 0.9716 | 0.599 | 0.4518 | |
| AC | 0.4565 | 1 | 0.4565 | 0.2814 | 0.6041 | |
| AD | 1.37 | 1 | 1.37 | 0.846 | 0.3733 | |
| BC | 0.0003 | 1 | 0.0003 | 0.0002 | 0.9892 | |
| BD | 0.7085 | 1 | 0.7085 | 0.4367 | 0.5194 | |
| CD | 0.0064 | 1 | 0.0064 | 0.0039 | 0.951 | |
| A2 | 2477.92 | 1 | 2477.92 | 1527.55 | <0.0001 | * |
| B2 | 201.53 | 1 | 201.53 | 124.24 | <0.0001 | * |
| C2 | 5.82 | 1 | 5.82 | 3.59 | 0.0791 | |
| D2 | 6.25 | 1 | 6.25 | 3.85 | 0.0699 | |
| 残差 | 22.71 | 14 | 1.62 | |||
| 失拟项 | 20.53 | 10 | 2.05 | 3.76 | 0.1067 | |
| 误差 | 2.18 | 4 | 0.5458 | |||
| 总计 | 2824.31 | 28 | ||||
| 标准偏差 | 1.27 | |||||
| 平均值 | 69.67 | |||||
| 变异系数 | 1.83 | |||||
| 决定系数R2 | 0.992 | |||||
| 校正决定系数 | 0.9839 | |||||
| 预测决定系数 | 0.9569 | |||||
| 信噪比 | 33.6496 | |||||
表4 COD去除率响应面设计方差分析
| 来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 2801.6 | 14 | 200.11 | 123.36 | <0.0001 | * |
| A | 105.55 | 1 | 105.55 | 65.07 | <0.0001 | * |
| B | 36.32 | 1 | 36.32 | 22.39 | 0.0003 | * |
| C | 36.74 | 1 | 36.74 | 22.65 | 0.0003 | * |
| D | 6.29 | 1 | 6.29 | 3.88 | 0.0691 | |
| AB | 0.9716 | 1 | 0.9716 | 0.599 | 0.4518 | |
| AC | 0.4565 | 1 | 0.4565 | 0.2814 | 0.6041 | |
| AD | 1.37 | 1 | 1.37 | 0.846 | 0.3733 | |
| BC | 0.0003 | 1 | 0.0003 | 0.0002 | 0.9892 | |
| BD | 0.7085 | 1 | 0.7085 | 0.4367 | 0.5194 | |
| CD | 0.0064 | 1 | 0.0064 | 0.0039 | 0.951 | |
| A2 | 2477.92 | 1 | 2477.92 | 1527.55 | <0.0001 | * |
| B2 | 201.53 | 1 | 201.53 | 124.24 | <0.0001 | * |
| C2 | 5.82 | 1 | 5.82 | 3.59 | 0.0791 | |
| D2 | 6.25 | 1 | 6.25 | 3.85 | 0.0699 | |
| 残差 | 22.71 | 14 | 1.62 | |||
| 失拟项 | 20.53 | 10 | 2.05 | 3.76 | 0.1067 | |
| 误差 | 2.18 | 4 | 0.5458 | |||
| 总计 | 2824.31 | 28 | ||||
| 标准偏差 | 1.27 | |||||
| 平均值 | 69.67 | |||||
| 变异系数 | 1.83 | |||||
| 决定系数R2 | 0.992 | |||||
| 校正决定系数 | 0.9839 | |||||
| 预测决定系数 | 0.9569 | |||||
| 信噪比 | 33.6496 | |||||
| 来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 2447.6 | 14 | 174.83 | 70.61 | <0.0001 | * |
| A | 1650.57 | 1 | 1650.57 | 666.61 | <0.0001 | * |
| B | 127.97 | 1 | 127.97 | 51.68 | <0.0001 | * |
| C | 5.04 | 1 | 5.04 | 2.04 | 0.1756 | |
| D | 17.13 | 1 | 17.13 | 6.92 | 0.0198 | * |
| AB | 3.69 | 1 | 3.69 | 1.49 | 0.2421 | |
| AC | 0.9136 | 1 | 0.9136 | 0.369 | 0.5533 | |
| AD | 0.3774 | 1 | 0.3774 | 0.1524 | 0.7021 | |
| BC | 0.2364 | 1 | 0.2364 | 0.0955 | 0.7619 | |
| BD | 0.0017 | 1 | 0.0017 | 0.0007 | 0.9795 | |
| CD | 0.2642 | 1 | 0.2642 | 0.1067 | 0.7488 | |
| A² | 636.79 | 1 | 636.79 | 257.18 | <0.0001 | * |
| B² | 41.04 | 1 | 41.04 | 16.58 | 0.0011 | * |
| C² | 13.82 | 1 | 13.82 | 5.58 | 0.0332 | * |
| D² | 23.13 | 1 | 23.13 | 9.34 | 0.0085 | * |
| 残差 | 34.66 | 14 | 2.48 | |||
| 失拟项 | 30.38 | 10 | 3.04 | 2.84 | 0.1632 | |
| 误差 | 4.28 | 4 | 1.07 | |||
| 总计 | 2482.27 | 28 | ||||
| 标准偏差 | 1.57 | |||||
| 平均值 | 63.55 | |||||
| 变异系数 | 2.48 | |||||
| 决定系数 | 0.9860 | |||||
| 校正决定系数 | 0.9721 | |||||
| 预测决定系数 | 0.9268 | |||||
| 信噪比 | 26.4979 | |||||
表5 降黏率响应面设计方差分析
| 来源 | 平方和 | 自由度 | 均方 | F值 | P值 | 显著性 |
|---|---|---|---|---|---|---|
| 模型 | 2447.6 | 14 | 174.83 | 70.61 | <0.0001 | * |
| A | 1650.57 | 1 | 1650.57 | 666.61 | <0.0001 | * |
| B | 127.97 | 1 | 127.97 | 51.68 | <0.0001 | * |
| C | 5.04 | 1 | 5.04 | 2.04 | 0.1756 | |
| D | 17.13 | 1 | 17.13 | 6.92 | 0.0198 | * |
| AB | 3.69 | 1 | 3.69 | 1.49 | 0.2421 | |
| AC | 0.9136 | 1 | 0.9136 | 0.369 | 0.5533 | |
| AD | 0.3774 | 1 | 0.3774 | 0.1524 | 0.7021 | |
| BC | 0.2364 | 1 | 0.2364 | 0.0955 | 0.7619 | |
| BD | 0.0017 | 1 | 0.0017 | 0.0007 | 0.9795 | |
| CD | 0.2642 | 1 | 0.2642 | 0.1067 | 0.7488 | |
| A² | 636.79 | 1 | 636.79 | 257.18 | <0.0001 | * |
| B² | 41.04 | 1 | 41.04 | 16.58 | 0.0011 | * |
| C² | 13.82 | 1 | 13.82 | 5.58 | 0.0332 | * |
| D² | 23.13 | 1 | 23.13 | 9.34 | 0.0085 | * |
| 残差 | 34.66 | 14 | 2.48 | |||
| 失拟项 | 30.38 | 10 | 3.04 | 2.84 | 0.1632 | |
| 误差 | 4.28 | 4 | 1.07 | |||
| 总计 | 2482.27 | 28 | ||||
| 标准偏差 | 1.57 | |||||
| 平均值 | 63.55 | |||||
| 变异系数 | 2.48 | |||||
| 决定系数 | 0.9860 | |||||
| 校正决定系数 | 0.9721 | |||||
| 预测决定系数 | 0.9268 | |||||
| 信噪比 | 26.4979 | |||||
| 参数 | 数值 | |
|---|---|---|
| 初始pH | 2.3 | |
| 曝气量/L·min–1 | 2.3 | |
| 微电解材料加量/g·L–1 | 76 | |
| 反应时间/min | 73 | |
| COD去除率 | ||
| 预测值/% | 67.08 | |
| 实验值/% | 65.92 | |
| 误差/% | 1.73 | |
| 降黏率 | ||
| 预测值/% | 57.37 | |
| 实验值/% | 56.42 | |
| 误差/% | 1.66 | |
表6 改进MOGOA优化参数验证结果表
| 参数 | 数值 | |
|---|---|---|
| 初始pH | 2.3 | |
| 曝气量/L·min–1 | 2.3 | |
| 微电解材料加量/g·L–1 | 76 | |
| 反应时间/min | 73 | |
| COD去除率 | ||
| 预测值/% | 67.08 | |
| 实验值/% | 65.92 | |
| 误差/% | 1.73 | |
| 降黏率 | ||
| 预测值/% | 57.37 | |
| 实验值/% | 56.42 | |
| 误差/% | 1.66 | |
| [24] | FAN Zheng, TIAN Runzhi, LIN Liang, et al. Desulfurization optimization of reforming catalytic dry gas using radial basis artificial neural network based on PSO algorithm[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3107-3118. |
| [25] | 仉洁, 王旭东, 杨逸飞, 等. 响应面优化温敏水凝胶汲取剂的制备及性能[J]. 化工进展, 2023, 42(10): 5363-5372. |
| ZHANG Jie, WANG Xudong, YANG Yifei, et al. Response surface optimization of preparation and performance of thermo-responsive hydrogels as draw agent[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5363-5372. | |
| [26] | 赵云天, 范峥, 李岩, 等. 利用响应面法优化废弃钻井液破胶[J]. 化学工程, 2024, 52(6): 89-94. |
| ZHAO Yuntian, FAN Zheng, LI Yan, et al. Optimization of glue breaking in waste drilling fluid using response surface methodology[J]. Chemical Engineering (China), 2024, 52(6): 89-94. | |
| [27] | YAN Zichun, XIE Shilong, YANG Mingxia. Effect and mechanism of iron-carbon micro-electrolysis pretreatment of organic peroxide production wastewater[J]. Environmental Science and Pollution Research International, 2024, 31(8): 11886-11897. |
| [28] | LI Xiang, ZHANG Jiajia, QIN Yang, et al. Enhanced removal of organic contaminants by novel iron–carbon and premagnetization: Performance and enhancement mechanism[J]. Chemosphere, 2022, 303: 135060. |
| [29] | HAN Yanhe, LI Han, LIU Meili, et al. Purification treatment of dyes wastewater with a novel micro-electrolysis reactor[J]. Separation and Purification Technology, 2016, 170: 241-247. |
| [30] | 刘奕杰, 马海涛, 郑文华, 等. 规整化铁碳材料的制备及降解高浓度苯酚的研究[J]. 水处理技术, 2024, 50(3): 53-58. |
| LIU Yijie, MA Haitao, ZHENG Wenhua, et al. Preparation of iron-carbon micro-electrolysis materials with normalization and its performance for degradation of phenol[J]. Technology of Water Treatment, 2024, 50(3): 53-58. | |
| [31] | 杨仁俊, 张伟, 赫瑞元, 等. 酸析-微电解法预处理对甲砜基甲苯生产废水[J]. 应用化工, 2021, 50(S1): 417-419. |
| YANG Renjun, ZHANG Wei, HE Ruiyuan, et al. Pretreatment of wastewater from p-methylsulfonyltoluene production by acid precipitation-micro-electrolysis[J]. Applied Chemical Industry, 2021, 50(S1): 417-419. | |
| [32] | 张东升, 余丽胜, 焦纬洲, 等. 基于响应面法的超声强化铁碳微电解处理硝基苯废水工艺优化研究[J]. 含能材料, 2018, 26(2): 178-184. |
| ZHANG Dongsheng, YU Lisheng, JIAO Weizhou, et al. Treatment of nitrobenzene wastewater via ultrasonic enhanced iron-carbon micro-electrolysis with response surface methodology[J]. Chinese Journal of Energetic Materials, 2018, 26(2): 178-184. | |
| [33] | MIRJALILI Seyedeh Zahra, MIRJALILI Seyedali, SAREMI Shahrzad, et al. Grasshopper optimization algorithm for multi-objective optimization problems[J]. Applied Intelligence, 2018, 48(4): 805-820. |
| [34] | MERAIHI Yassine, GABIS Asma Benmessaoud, MIRJALILI Seyedali, et al. Grasshopper optimization algorithm: Theory, variants, and applications[J]. IEEE Access, 2021, 9: 50001-50024. |
| [35] | SAJJAD Faria, RASHID Muhammad, ZAFAR Afia, et al. An efficient hybrid approach for optimization using simulated annealing and grasshopper algorithm for IoT applications[J]. Discover Internet of Things, 2023, 3(1): 7. |
| [36] | GAO Rongsheng, CAO Yiping, LIU Qi, et al. Research progress in treatment and utilization of fracturing flowback fluid[J]. Chemical Science and Engineering, 2023, 2(3): 29-37. |
| [37] | 周贵忠, 王绚, 刘建庭, 等. 多孔铁-碳-稀土合金填料对高盐废水中氯离子的去除[J]. 环境工程学报, 2013, 7(6): 2167-2172. |
| ZHOU Guizhong, WANG Xuan, LIU Jianting, et al. Removal of chloride ion in high salt wastewater by porous iron-carbon-rare earth alloy filler[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2167-2172. | |
| [1] | 舒印彪, 赵勇, 赵良, 等. “双碳” 目标下我国能源电力低碳转型路径[J]. 中国电机工程学报, 2023, 43(5): 1663-1672. |
| SHU Yinbiao, ZHAO Yong, ZHAO Liang, et al. Study on low carbon energy transition path toward carbon peak and carbon neutrality[J]. Proceedings of the CSEE, 2023, 43(5): 1663-1672. | |
| [2] | 邹才能, 林敏捷, 马锋, 等. 碳中和目标下中国天然气工业进展、挑战及对策[J]. 石油勘探与开发, 2024, 51(2): 418-435. |
| ZOU Caineng, LIN Minjie, MA Feng, et al. Development, challenges and strategies of natural gas industry under carbon neutral target in China[J]. Petroleum Exploration and Development, 2024, 51(2): 418-435. | |
| [3] | 刘文士, 廖仕孟, 向启贵, 等. 美国页岩气压裂返排液处理技术现状及启示[J]. 天然气工业, 2013, 33(12): 158-162. |
| LIU Wenshi, LIAO Shimeng, XIANG Qigui, et al. Status quo of fracturing flowback fluids treatment technologies of US shale gas wells and its enlightenment for China[J]. Natural Gas Industry, 2013, 33(12): 158-162. | |
| [4] | WANG Huan, LU Lu, CHEN Xi, et al. Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States[J]. Water Research, 2019, 164: 114942. |
| [5] | ESTRADA José M, BHAMIDIMARRI Rao. A review of the issues and treatment options for wastewater from shale gas extraction by hydraulic fracturing[J]. Fuel, 2016, 182: 292-303. |
| [6] | LUEK Jenna L, GONSIOR Michael. Organic compounds in hydraulic fracturing fluids and wastewaters: A review[J]. Water Research, 2017, 123: 536-548. |
| [7] | Ahmadun FAKHRU’L-RAZI, PENDASHTEH Alireza, ABDULLAH Luqman Chuah, et al. Review of technologies for oil and gas produced water treatment[J]. Journal of Hazardous Materials, 2009, 170(2/3): 530-551. |
| [8] | DE AGUIAR PEDOTT Victor, DELLA ROCCA Daniela Gier, WESCHENFELDER Silvio Edegar, et al. Principles, challenges and prospects for electro-oxidation treatment of oilfield produced water[J]. Journal of Environmental Management, 2024, 370: 122638. |
| [9] | 于建国, 韩昫身, 金艳. 页岩气压裂返排液生物处理技术研究进展[J]. 石油与天然气化工, 2022, 51(5): 131-138. |
| YU Jianguo, HAN Xushen, JIN Yan. Biological treatment of shale gas flowback and produced water: A review[J]. Chemical Engineering of Oil & Gas, 2022, 51(5): 131-138. | |
| [10] | YANG Zemeng, MA Yuepeng, LIU Ying, et al. Degradation of organic pollutants in near-neutral pH solution by Fe-C micro-electrolysis system[J]. Chemical Engineering Journal, 2017, 315: 403-414. |
| [11] | YANG Xiaoyi, XUE Yu, WANG Wenna. Mechanism, kinetics and application studies on enhanced activated sludge by interior microelectrolysis[J]. Bioresource Technology, 2009, 100(2): 649-653. |
| [12] | CHENG Jiehong, YE Renkai, ZHU Jun, et al. Effect of ferrite doped sludge-based catalysts on methane production in anaerobic digestion of organic solid waste[J]. Fuel, 2024, 368: 131309. |
| [13] | 李海东, 杨远坤, 郭姝姝, 等. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
| LI Haidong, YANG Yuankun, GUO Shushu, et al. Effect of carbonization and calcination temperature on As(Ⅲ) removal performance of plant-based Fe-C microelectrolytic materials[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3652-3663. | |
| [14] | HUONG Do Tra, NGUYEN Van Tu, Xuan Linh HA, et al. Enhanced degradation of phenolic compounds in coal gasification wastewater by methods of microelectrolysis Fe-C and anaerobic-anoxic-oxic moving bed biofilm reactor (A2O-MBBR)[J]. Processes, 2020, 8(10): 1258. |
| [15] | HUANG Chao, PENG Fen, GUO Haijun, et al. Efficient COD degradation of turpentine processing wastewater by combination of Fe-C micro-electrolysis and Fenton treatment: Long-term study and scale up[J]. Chemical Engineering Journal, 2018, 351: 697-707. |
| [16] | WAN Zhonghao, CHO Dong-Wan, TSANG Daniel C W, et al. Concurrent adsorption and micro-electrolysis of Cr(Ⅵ) by nanoscale zerovalent iron/biochar/Ca-alginate composite[J]. Environmental Pollution, 2019, 247: 410-420. |
| [17] | 麻微微, 韩洪军, 徐春艳, 等. 铁碳微电解预处理煤热解废水的效能及生物毒性研究[J]. 煤炭科学技术, 2018, 46(9): 62-67. |
| MA Weiwei, HAN Hongjun, XU Chunyan, et al. Removal efficiency and biotoxicity evaluation of iron-carbon micro-electrolysis process for coal pyrolysis wastewater pretreatment[J]. Coal Science and Technology, 2018, 46(9): 62-67. | |
| [18] | HAN Guihong, CAI Baogang, YANG Shuzhen, et al. Resource utilization of copper slag for microelectrolysis material preparation for phenol degradation[J]. Journal of Environmental Chemical Engineering, 2024, 12(4): 113151. |
| [19] | 云箭, 张华, 马信缘, 等. 深部煤层气井胍胶返排液回用处理技术优化及应用[J]. 石油学报, 2023, 44(11): 1959-1973. |
| YUN Jian, ZHANG Hua, MA Xinyuan, et al. Optimization and application of treatment technology for guanidine gum fracturing flowback fluid in deep coalbed methane wells[J]. Acta Petrolei Sinica, 2023, 44(11): 1959-1973. | |
| [20] | LUO Mina, YANG Hanchao, WANG Kuntai, et al. Coupling iron-carbon micro-electrolysis with persulfate advanced oxidation for hydraulic fracturing return fluid treatment[J]. Chemosphere, 2023, 313: 137415. |
| [21] | 郑帅, 孙鑫格, 谢亮, 等. 油田压裂返排液的电化学处理[J]. 环境工程学报, 2023, 17(11): 3543-3553. |
| ZHENG Shuai, SUN Xinge, XIE Liang, et al. Electrochemical treatment of fracturing fluid in oil field[J]. China Industrial Economics, 17(11): 3543-3553.. | |
| [22] | ZHU Ling, HUANG Daikuan, DU Hao. Pretreatment of rubber additives processing wastewater by aluminum-carbon micro-electrolysis process: Process optimization and mechanism analysis[J]. Water, 2022, 14(4): 582. |
| [23] | 赵瑾, 姜天翔, 王勋亮, 等. Fenton耦合铁碳微电解技术处理电镀废水的工艺优化[J]. 化学与生物工程, 2024, 41(1): 63-68. |
| ZHAO Jin, JIANG Tianxiang, WANG Xunliang, et al. Optimization in treatment process of electroplating wastewater by Fenton-coupled iron-carbon micro-electrolysis technology[J]. Chemistry & Bioengineering, 2024, 41(1): 63-68. | |
| [24] | 范峥, 田润芝, 林亮, 等. 利用基于PSO算法的径向基人工神经网络优化重催干气脱硫[J]. 化工进展, 2021, 40(6): 3107-3118. |
| [1] | 尹晓云, 朱进, 刘春艳, 张锦涛, 徐源, 朱英如, 苏明, 孙月, 孙杰, 袁颖. 基于PB设计和响应面法的CPS硫黄回收装置能量优化[J]. 化工进展, 2025, 44(S1): 124-133. |
| [2] | 马云, 崔家豪, 杜杰, 张帆, 单巧利, 牛瑞泽, 白海涛. 油气田压裂返排液高级氧化工艺研究进展[J]. 化工进展, 2025, 44(S1): 441-450. |
| [3] | 马晶, 马玉龙, 朱莉, 乔松, 孙永刚, 吉文欣. 不同方法对煤气化粗渣中硅铝矿物的活化[J]. 化工进展, 2025, 44(7): 4251-4266. |
| [4] | 周鹏辉, 曾琳, 代黎, 冯小波, 倪笛. 响应面法和熵权法对离心风机的多目标性能优化[J]. 化工进展, 2025, 44(6): 3271-3279. |
| [5] | 陈坚红, 张开基, 陈庆乐, 杨帅, 方伟. 石化火炬气回收方法多目标优化计算分析[J]. 化工进展, 2025, 44(3): 1218-1227. |
| [6] | 许智, 姜昌伟, 李兵, 亓俣权, 钱发, 李光伟. 相变冷却与液冷耦合的锂电池组热管理系统多目标优化[J]. 化工进展, 2025, 44(10): 5627-5639. |
| [7] | 吴宇琦, 李江涛, 丁建智, 宋秀兰, 苏冰琴. 焙烧镁铝水滑石脱除厌氧消化沼气中CO2的效果及机制[J]. 化工进展, 2024, 43(9): 5250-5261. |
| [8] | 潘彤彤, 崔香梅. 葡甲胺功能化rGO/MWCNTs-OH复合气凝胶的制备及对硼的吸附[J]. 化工进展, 2024, 43(6): 3386-3397. |
| [9] | 徐冰, 张倩, 吴欢欢, 邵光艺, 田淑雯, 柴文明, 张鸣, 姚宏. 基于LCA的压裂返排液膜集成工艺碳足迹分析和环境影响评价[J]. 化工进展, 2024, 43(12): 7105-7114. |
| [10] | 刘华林, 乔跃, 魏志伟, 包亚岭, 王丽洋, 李硕森, 何畅. 考虑波动性约束的原油全产业链生产调度优化模型[J]. 化工进展, 2024, 43(12): 6700-6710. |
| [11] | 胡恒, 徐娜, 李梓良, 于嘉朋, 李旭, 张玮. T型微反应器中合成脂肪酸甲酯磺酸盐动力学及工艺优化[J]. 化工进展, 2024, 43(12): 6634-6644. |
| [12] | 凌山, 刘聚明, 张前程, 李艳. 模拟移动床分离过程及其优化方法研究进展[J]. 化工进展, 2023, 42(5): 2233-2244. |
| [13] | 张赫, 李小可, 熊颖, 文劲. 基于水凝胶界面光蒸发的压裂返排液脱盐降污处理[J]. 化工进展, 2023, 42(2): 1073-1079. |
| [14] | 钟传蓉, 冯明石, 曾光玉, 黄晶晶, 何希高. 页岩压裂返排液的预处理及絮凝剂的溶液结构[J]. 化工进展, 2022, 41(9): 5109-5114. |
| [15] | 代敏, 杨福胜, 张早校, 刘桂莲, 冯霄. 基于多策略集成优化算法的己烷油精馏过程3E多目标优化[J]. 化工进展, 2022, 41(6): 2852-2863. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |