化工进展 ›› 2025, Vol. 44 ›› Issue (12): 7045-7056.DOI: 10.16085/j.issn.1000-6613.2024-1788
• 材料科学与技术 • 上一篇
蒋华义1(
), 郭智杰1, 梁爱国2, 刘冬冬2, 巨怡怡3, 朱秋波2, 于倩2
收稿日期:2024-11-04
修回日期:2025-02-19
出版日期:2025-12-25
发布日期:2026-01-06
通讯作者:
蒋华义
作者简介:蒋华义(1973—),男,博士,教授,研究方向为油气储运工程。E-mail:hyjiang@xsyu.edu.cn。
基金资助:
JIANG Huayi1(
), GUO Zhijie1, LIANG Aiguo2, LIU Dongdong2, JU Yiyi3, ZHU Qiubo2, YU Qian2
Received:2024-11-04
Revised:2025-02-19
Online:2025-12-25
Published:2026-01-06
Contact:
JIANG Huayi
摘要:
为解决CaCO3结垢造成管线堵塞问题。基于“变被动结垢为主动定点结垢除垢”的思路,本文针对某油田采出水,综合动态剪切实验以及扫描电子显微镜、接触角、表面自由能和粗糙度测试,研究磁场与材料协同作用规律以及对碳酸钙晶体动态生长的影响机理。结果表明,有/无磁场作用下各材料对失钙率和碳酸钙结垢量的影响规律性一致。无磁场作用下,失钙率和结垢量排序为聚四氟乙烯(PTFE)>玻璃钢>镀锌铁>316不锈钢>H62黄铜>PVC;磁场作用下,失钙率排序为PTFE>玻璃钢>镀锌铁>316不锈钢>H62铜>PVC,结垢量排序为PTFE>镀锌铁>玻璃钢>316不锈钢>H62铜>PVC。磁场与材料耦合作用使结垢量降低、失钙率升高以及碳酸钙成核诱导期缩短。造成这种作用的原因是磁场作用下,材料表面接触角与粗糙度降低,表面自由能增大,促进文石型CaCO3垢物形成。磁场作用下PTFE材料与磁场耦合作用最强,当磁场强度为4000Gs,结垢材料为PTFE时,结垢量和失钙率达到最高值分别为4.84g/m2和52%,诱导期由8min缩短到2min。在50min时,结垢量降低29%,失钙率升高12%。此外,随着时间延长,材料表面接触角逐渐减小,表面自由能和表面粗糙度逐渐增大,有利于污垢在材料表面继续附着。
中图分类号:
蒋华义, 郭智杰, 梁爱国, 刘冬冬, 巨怡怡, 朱秋波, 于倩. 磁场与材料协同对碳酸钙晶体动态生长的影响[J]. 化工进展, 2025, 44(12): 7045-7056.
JIANG Huayi, GUO Zhijie, LIANG Aiguo, LIU Dongdong, JU Yiyi, ZHU Qiubo, YU Qian. Synergic influence of magnetic field and material on dynamic growth of calcium carbonate crystals[J]. Chemical Industry and Engineering Progress, 2025, 44(12): 7045-7056.
| 组分类型 | 组分名称 | 浓度/mg·kg-1 |
|---|---|---|
| 阳离子 | Ca2+ | 196.24 |
| Mg2+ | 27.51 | |
| Na+ | 3493.38 | |
| K+ | 1.26 | |
| 阴离子 | Cl- | 5215.65 |
| 1021.64 | ||
| 0.74 | ||
| 3.31 |
表1 实验水样离子成分表
| 组分类型 | 组分名称 | 浓度/mg·kg-1 |
|---|---|---|
| 阳离子 | Ca2+ | 196.24 |
| Mg2+ | 27.51 | |
| Na+ | 3493.38 | |
| K+ | 1.26 | |
| 阴离子 | Cl- | 5215.65 |
| 1021.64 | ||
| 0.74 | ||
| 3.31 |
| 标准液 | 表面张力/mN·m-1 | ||
|---|---|---|---|
| 蒸馏水 | 72.8 | 21.8 | 51 |
| 二碘甲烷 | 50.8 | 48.5 | 2.3 |
表2 标准液参数表
| 标准液 | 表面张力/mN·m-1 | ||
|---|---|---|---|
| 蒸馏水 | 72.8 | 21.8 | 51 |
| 二碘甲烷 | 50.8 | 48.5 | 2.3 |
| 材料类型 | 标准液体 | 接触角/(°) | |||||
|---|---|---|---|---|---|---|---|
| 0min | 10min | 20min | 30min | 40min | 50min | ||
| 玻璃钢 | 蒸馏水 | 70.19 | 69.87 | 68.15 | 67.58 | 67.25 | 66.86 |
| 二碘甲烷 | 45.37 | 44.26 | 43.78 | 43.19 | 42.58 | 42.10 | |
| 玻璃钢+磁场 | 蒸馏水 | 70.19 | 69.13 | 67.85 | 67.1 | 66.76 | 66.20 |
| 二碘甲烷 | 45.37 | 43.9 | 43.20 | 42.83 | 42.30 | 41.78 | |
| PTEF | 蒸馏水 | 98.57 | 97.85 | 97.10 | 96.89 | 96.23 | 95.78 |
| 二碘甲烷 | 68.20 | 67.50 | 66.18 | 65.30 | 64.90 | 64.00 | |
| PTEF+磁场 | 蒸馏水 | 98.57 | 97.26 | 96.87 | 95.69 | 96.17 | 95.19 |
| 二碘甲烷 | 68.20 | 67.19 | 65.87 | 65.10 | 64.58 | 63.57 | |
| PVC | 蒸馏水 | 78.95 | 78.56 | 78.15 | 77.87 | 77.56 | 77.31 |
| 二碘甲烷 | 76.25 | 75.21 | 75.16 | 74.89 | 73.29 | 72.89 | |
| PVC+磁场 | 蒸馏水 | 78.95 | 78.39 | 77.59 | 77.20 | 76.95 | 76.10 |
| 二碘甲烷 | 76.25 | 75.10 | 74.89 | 74.27 | 73.10 | 72.56 | |
| 镀锌铁 | 蒸馏水 | 81.13 | 80.76 | 80.19 | 78.75 | 78.12 | 77.87 |
| 二碘甲烷 | 42.13 | 41.56 | 40.85 | 40.28 | 39.89 | 39.20 | |
| 镀锌铁+磁场 | 蒸馏水 | 81.13 | 79.85 | 79.15 | 78.59 | 77.20 | 76.16 |
| 二碘甲烷 | 42.13 | 41.20 | 39.28 | 38.50 | 38.20 | 37.10 | |
| H62铜 | 蒸馏水 | 85.79 | 84.10 | 82.38 | 81.59 | 80.12 | 79.72 |
| H62铜+磁场 | 二碘甲烷 | 43.22 | 42.90 | 42.95 | 42.42 | 42.10 | 41.76 |
| 蒸馏水 | 85.79 | 83.90 | 81.51 | 79.20 | 77.76 | 76.20 | |
| 316不锈钢 | 蒸馏水 | 80.79 | 80.27 | 79.56 | 79.20 | 78.56 | 78.10 |
| 二碘甲烷 | 43.25 | 42.98 | 42.30 | 41.89 | 41.20 | 40.56 | |
| 316不锈钢+磁场 | 蒸馏水 | 80.79 | 78.39 | 78.10 | 77.50 | 77.20 | 76.58 |
| 二碘甲烷 | 43.25 | 41.28 | 39.89 | 39.50 | 39.10 | 38.56 | |
表3 标准液体的接触角汇总表
| 材料类型 | 标准液体 | 接触角/(°) | |||||
|---|---|---|---|---|---|---|---|
| 0min | 10min | 20min | 30min | 40min | 50min | ||
| 玻璃钢 | 蒸馏水 | 70.19 | 69.87 | 68.15 | 67.58 | 67.25 | 66.86 |
| 二碘甲烷 | 45.37 | 44.26 | 43.78 | 43.19 | 42.58 | 42.10 | |
| 玻璃钢+磁场 | 蒸馏水 | 70.19 | 69.13 | 67.85 | 67.1 | 66.76 | 66.20 |
| 二碘甲烷 | 45.37 | 43.9 | 43.20 | 42.83 | 42.30 | 41.78 | |
| PTEF | 蒸馏水 | 98.57 | 97.85 | 97.10 | 96.89 | 96.23 | 95.78 |
| 二碘甲烷 | 68.20 | 67.50 | 66.18 | 65.30 | 64.90 | 64.00 | |
| PTEF+磁场 | 蒸馏水 | 98.57 | 97.26 | 96.87 | 95.69 | 96.17 | 95.19 |
| 二碘甲烷 | 68.20 | 67.19 | 65.87 | 65.10 | 64.58 | 63.57 | |
| PVC | 蒸馏水 | 78.95 | 78.56 | 78.15 | 77.87 | 77.56 | 77.31 |
| 二碘甲烷 | 76.25 | 75.21 | 75.16 | 74.89 | 73.29 | 72.89 | |
| PVC+磁场 | 蒸馏水 | 78.95 | 78.39 | 77.59 | 77.20 | 76.95 | 76.10 |
| 二碘甲烷 | 76.25 | 75.10 | 74.89 | 74.27 | 73.10 | 72.56 | |
| 镀锌铁 | 蒸馏水 | 81.13 | 80.76 | 80.19 | 78.75 | 78.12 | 77.87 |
| 二碘甲烷 | 42.13 | 41.56 | 40.85 | 40.28 | 39.89 | 39.20 | |
| 镀锌铁+磁场 | 蒸馏水 | 81.13 | 79.85 | 79.15 | 78.59 | 77.20 | 76.16 |
| 二碘甲烷 | 42.13 | 41.20 | 39.28 | 38.50 | 38.20 | 37.10 | |
| H62铜 | 蒸馏水 | 85.79 | 84.10 | 82.38 | 81.59 | 80.12 | 79.72 |
| H62铜+磁场 | 二碘甲烷 | 43.22 | 42.90 | 42.95 | 42.42 | 42.10 | 41.76 |
| 蒸馏水 | 85.79 | 83.90 | 81.51 | 79.20 | 77.76 | 76.20 | |
| 316不锈钢 | 蒸馏水 | 80.79 | 80.27 | 79.56 | 79.20 | 78.56 | 78.10 |
| 二碘甲烷 | 43.25 | 42.98 | 42.30 | 41.89 | 41.20 | 40.56 | |
| 316不锈钢+磁场 | 蒸馏水 | 80.79 | 78.39 | 78.10 | 77.50 | 77.20 | 76.58 |
| 二碘甲烷 | 43.25 | 41.28 | 39.89 | 39.50 | 39.10 | 38.56 | |
| 材料类型 | 表面能参数 | 表面能/mN·m-1 | |||||
|---|---|---|---|---|---|---|---|
| 0min | 10min | 20min | 30min | 40min | 50min | ||
| 玻璃钢 | 30.33 | 30.90 | 30.77 | 30.97 | 31.24 | 31.42 | |
| 10.39 | 10.35 | 11.34 | 11.58 | 11.65 | 11.80 | ||
| 玻璃钢+磁场 | 30.33 | 30.93 | 31.03 | 31.07 | 31.28 | 31.44 | |
| 10.39 | 10.74 | 11.40 | 11.81 | 11.91 | 12.16 | ||
| PTEF | 22.38 | 22.68 | 23.39 | 23.92 | 24.04 | 24.53 | |
| 1.55 | 1.66 | 1.70 | 1.66 | 1.79 | 1.81 | ||
| PTEF+磁场 | 22.38 | 22.76 | 23.54 | 23.79 | 24.24 | 24.69 | |
| PTEF+磁场 | 1.55 | 1.78 | 1.73 | 1.97 | 1.77 | 1.93 | |
| PVC | 13.85 | 14.34 | 14.30 | 14.40 | 15.23 | 15.41 | |
| 13.26 | 13.19 | 13.48 | 13.59 | 13.28 | 13.32 | ||
| PVC+磁场 | 13.85 | 14.38 | 14.36 | 14.63 | 15.23 | 15.38 | |
| 13.26 | 13.28 | 13.80 | 13.88 | 13.66 | 14.12 | ||
| 镀锌铁 | 34.96 | 35.20 | 35.46 | 35.41 | 35.46 | 35.79 | |
| 4.07 | 4.15 | 4.29 | 4.84 | 5.08 | 5.09 | ||
| 镀锌铁+磁场 | 34.96 | 35.17 | 36.08 | 36.37 | 36.17 | 36.49 | |
| 4.07 | 4.49 | 4.53 | 4.68 | 5.26 | 5.60 | ||
| H62铜 | 35.55 | 35.29 | 34.81 | 34.91 | 34.71 | 34.81 | |
| 2.47 | 3.02 | 3.67 | 3.92 | 4.49 | 4.62 | ||
| H62铜+磁场 | 35.55 | 35.61 | 35.09 | 35.18 | 35.72 | 35.58 | |
| 2.47 | 3.02 | 3.91 | 4.73 | 5.15 | 5.82 | ||
| 316不锈钢 | 34.21 | 34.23 | 34.45 | 34.60 | 34.83 | 35.08 | |
| 4.36 | 4.55 | 4.77 | 4.87 | 5.06 | 5.18 | ||
| 316不锈+磁场 | 34.21 | 34.74 | 35.46 | 35.52 | 35.67 | 35.80 | |
| 4.36 | 5.15 | 5.08 | 5.31 | 5.39 | 5.61 | ||
表4 有/无磁场作用下材料表面自由能色散分量和极性分量
| 材料类型 | 表面能参数 | 表面能/mN·m-1 | |||||
|---|---|---|---|---|---|---|---|
| 0min | 10min | 20min | 30min | 40min | 50min | ||
| 玻璃钢 | 30.33 | 30.90 | 30.77 | 30.97 | 31.24 | 31.42 | |
| 10.39 | 10.35 | 11.34 | 11.58 | 11.65 | 11.80 | ||
| 玻璃钢+磁场 | 30.33 | 30.93 | 31.03 | 31.07 | 31.28 | 31.44 | |
| 10.39 | 10.74 | 11.40 | 11.81 | 11.91 | 12.16 | ||
| PTEF | 22.38 | 22.68 | 23.39 | 23.92 | 24.04 | 24.53 | |
| 1.55 | 1.66 | 1.70 | 1.66 | 1.79 | 1.81 | ||
| PTEF+磁场 | 22.38 | 22.76 | 23.54 | 23.79 | 24.24 | 24.69 | |
| PTEF+磁场 | 1.55 | 1.78 | 1.73 | 1.97 | 1.77 | 1.93 | |
| PVC | 13.85 | 14.34 | 14.30 | 14.40 | 15.23 | 15.41 | |
| 13.26 | 13.19 | 13.48 | 13.59 | 13.28 | 13.32 | ||
| PVC+磁场 | 13.85 | 14.38 | 14.36 | 14.63 | 15.23 | 15.38 | |
| 13.26 | 13.28 | 13.80 | 13.88 | 13.66 | 14.12 | ||
| 镀锌铁 | 34.96 | 35.20 | 35.46 | 35.41 | 35.46 | 35.79 | |
| 4.07 | 4.15 | 4.29 | 4.84 | 5.08 | 5.09 | ||
| 镀锌铁+磁场 | 34.96 | 35.17 | 36.08 | 36.37 | 36.17 | 36.49 | |
| 4.07 | 4.49 | 4.53 | 4.68 | 5.26 | 5.60 | ||
| H62铜 | 35.55 | 35.29 | 34.81 | 34.91 | 34.71 | 34.81 | |
| 2.47 | 3.02 | 3.67 | 3.92 | 4.49 | 4.62 | ||
| H62铜+磁场 | 35.55 | 35.61 | 35.09 | 35.18 | 35.72 | 35.58 | |
| 2.47 | 3.02 | 3.91 | 4.73 | 5.15 | 5.82 | ||
| 316不锈钢 | 34.21 | 34.23 | 34.45 | 34.60 | 34.83 | 35.08 | |
| 4.36 | 4.55 | 4.77 | 4.87 | 5.06 | 5.18 | ||
| 316不锈+磁场 | 34.21 | 34.74 | 35.46 | 35.52 | 35.67 | 35.80 | |
| 4.36 | 5.15 | 5.08 | 5.31 | 5.39 | 5.61 | ||
| [1] | 赵中华, 邢晓凯, 周恒, 等. 表面特性对污垢结垢行为影响研究综述[J]. 石油化工高等学校学报, 2018, 31(2): 89-95. |
| ZHAO Zhonghua, XING Xiaokai, ZHOU Heng, et al. Review on the effect of surface characteristics on fouling behavior[J]. Journal of Petrochemical Universities, 2018, 31(2): 89-95. | |
| [2] | 马云, 叶从丹, 李永军, 等. 吴定区块多层系开发采出液集输系统的堵塞机理[J]. 西安石油大学学报(自然科学版), 2019, 34(3): 35-40. |
| MA Yun, YE Congdan, LI Yongjun, et al. Study on blockage mechanism of produced liquid gathering and transportation system in Wuding multi-layer development block[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2019, 34(3): 35-40. | |
| [3] | 李善建, 何浩轩, 王泽坤, 等. 气井井筒堵塞原因分析及解堵工艺研究进展[J]. 西安石油大学学报(自然科学版), 2024, 39(1): 56-65. |
| LI Shanjian, HE Haoxuan, WANG Zekun, et al. Analysis of reasons for wellbore blockage in gas wells and research progress in blockage removal technology[J]. Journal of Xi’an Shiyou University (Natural Science Edition), 2024, 39(1): 56-65. | |
| [4] | FINLAY John A, CALLOW Maureen E, ISTA Linnea K, et al. The influence of surface wettability on the adhesion strength of settled spores of the green alga enteromorpha and the diatom Amphora[J]. Integrative and Comparative Biology, 2002, 42(6): 1116-1122. |
| [5] | WANG Ye, HANSEN Christopher J, WU Chi-Chin, et al. Effect of surface wettability on the interfacial adhesion of a thermosetting elastomer on glass[J]. RSC Advances, 2021, 11(49): 31142-31151. |
| [6] | JIN Hong-Qing, ATHREYA Hrushikesha, WANG Sophie, et al. Experimental study of crystallization fouling by calcium carbonate: Effects of surface structure and material[J]. Desalination, 2022, 532: 115754. |
| [7] | Sandy SÁNCHEZ, PFEIFER Lukas, VLACHOPOULOS Nikolaos, et al. Rapid hybrid perovskite film crystallization from solution[J]. Chemical Society Reviews, 2021, 50(12): 7108-7131. |
| [8] | BERCE Jure, Matevž ZUPANČIČ, Matic MOŽE, et al. A review of crystallization fouling in heat exchangers[J]. Processes, 2021, 9(8): 1356. |
| [9] | GROSFILS Patrick, LUTSKO James F. Impact of surface roughness on crystal nucleation[J]. Crystals, 2021, 11(1): 4. |
| [10] | WANG Tong, CHEN Shougang, FENG Huimeng, et al. Modification strategy of siloxane antifouling coating: Adhesion strength, static antifouling, and self-healing properties[J]. Surface Science and Technology, 2023, 1(1): 28. |
| [11] | JIANG Huayi, SUN Nana, JU Yiyi, et al. Study on the effect of surface properties of non-metallic materials on the growth mechanism of crystallization fouling[J]. Processes, 2023, 11(8): 2232. |
| [12] | GAO Qiusheng, DUAN Liang, JIA Yanyan, et al. A comprehensive analysis of the impact of inorganic matter on membrane organic fouling: A mini review[J]. Membranes, 2023, 13(10): 837. |
| [13] | POTTICARY Jason, TERRY Lui R, BELL Christopher, et al. An unforeseen polymorph of coronene by the application of magnetic fields during crystal growth[J]. Nature Communications, 2016, 7: 11555. |
| [14] | WU Zeyu, CHEN Pengpeng, BIAN Huixi, et al. Application of magnetic field to accelerate the crystallization of scopolamine hydrobromide[J]. Separations, 2023, 10(9): 504. |
| [15] | SOHAILI Johan, SHI Hon Siau, LAVANIA-BALOO, et al. Removal of scale deposition on pipe walls by using magnetic field treatment and the effects of magnetic strength[J]. Journal of Cleaner Production, 2016, 139: 1393-1399. |
| [16] | ALABI Adetunji, CHIESA Matteo, GARLISI Corrado, et al. Advances in anti-scale magnetic water treatment[J]. Environmental Science: Water Research & Technology, 2015, 1(4): 408-425. |
| [17] | 韩勇. 缠绕式电脉冲水处理系统阻垢效能优化关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
| HAN Yong. Study on key technologies of scale inhibition efficiency optimization of wound electric pulse water treatment system[D]. Harbin: Harbin Institute of Technology, 2013. | |
| [18] | AMER Lydia, OUHENIA Salim, CHATEIGNER Daniel, et al. The effect of a magnetic field on the precipitation of calcium carbonate[J]. Applied Physics A, 2021, 127(9): 716. |
| [19] | LIU Zeyuan, DI LUCCIO Marco, Sergio GARCÍA, et al. Effect of magnetic field on calcium-silica fouling and interactions in brackish water distribution systems[J]. Science of the Total Environment, 2021, 798: 148900. |
| [20] | HOU Zhongwei, LIU Qiang, SUN Yongwei, et al. Influence of electromagnetic field on crystallization of tunnel drainage pipes[J]. Journal of Applied Science and Engineering, 2022, 26(4): 517-527. |
| [21] | WANG Gong, ZOU Shunyu, ZHENG Wei, et al. Optimum frequency model research and experimental verification for suppressing CaCO3 scaling in copper tubes by an electromagnetic field[J]. International Communications in Heat and Mass Transfer, 2022, 138: 106358. |
| [22] | ZHANG Yilong, TIAN Hongliang, LIANG Yandong, et al. Experimental study of fouling characteristics of CaCO3 precipitated crystal scale mixed with different particles in an alternating magnetic field environment[J]. International Journal of Thermal Sciences, 2024, 203: 109102. |
| [23] | 陈小砖, 李栋, 赵嫚, 等. 磁场、超声场、高压静电场抑垢阻垢研究进展[J]. 工业水处理, 2025, 45(3): 22-33. |
| CHEN Xiaozhuan, LI Dong, ZHAO man, et al. Progress in the research of scale inhibition and anti-scaling in magnetic fields, ultrasonic fields, and high voltage electrostatic fields [J]. Industrial Water Treatment, 2025, 45(3): 22-33. | |
| [24] | ALIMI F, TLILI M M, AMOR M BEN, et al. Effect of magnetic water treatment on calcium carbonate precipitation: Influence of the pipe material[J]. Chemical Engineering and Processing: Process Intensification, 2009, 48(8): 1327-1332. |
| [25] | 唐瑞. 基于扫频电磁场的管道内壁阻垢特性研究[D]. 常州: 常州大学, 2021. |
| TANG Rui. Study on scale inhibition characteristics of pipeline inner wall based on swept electromagnetic field[D]. Changzhou: Changzhou University, 2021. | |
| [26] | 蒋华义, 蔡航航, 梁爱国, 等. 碱对镀锌铁表面CaCO3污垢生长特性的影响机理研究[J]. 化工学报, 2019, 70(1): 170-178. |
| JIANG Huayi, CAI Hanghang, LIANG Aiguo, et al. Effect of alkali about growth characteristics of CaCO3 on galvanized iron surface[J]. CIESC Journal, 2019, 70(1): 170-178. | |
| [27] | 蒋华义, 张定周, 梁爱国, 等. 材料类型对CaCO3析晶污垢生长特性的影响机理研究[J]. 表面技术, 2018, 47(12): 255-262. |
| JIANG Huayi, ZHANG Dingzhou, LIANG Aiguo, et al. Effect mechanism of material type on crystallization growth of CaCO3-based scale[J]. Surface Technology, 2018, 47(12): 255-262. | |
| [28] | Kock-Yee LAW, ZHAO Hong. Determination of solid surface tension by contact angle[M]//Surface wetting. Cham: Springer International Publishing, 2015: 135-148. |
| [29] | 谭帼馨, 王航, 宁成云, 等. OTS修饰活性钛表面及电化学沉积钙磷涂层的研究[J]. 稀有金属材料与工程, 2015, 44(6): 1379-1384. |
| TAN Guoxin, WANG Hang, NING Chengyun, et al. Modification of titanium surface with octadecyl-trichlorosilane and its effects on electrochemical deposition of calcium phosphate[J]. Rare Metal Materials and Engineering, 2015, 44(6): 1379-1384. | |
| [30] | 李瑾. 聚垢材料对垢沉积速率影响规律研究[D]. 西安: 西安石油大学, 2020. |
| LI Jin. Study on the influence of scale-accumulating materials on scale deposition rate[D]. Xi’an: Xi’an Shiyou University, 2020. | |
| [31] | Gamzenur ÖZSIN, Murat KıLıÇ, KıRBıYıK KURUKAVAK Çisem, et al. Thermal characteristics, stability, and degradation of PVC composites and nanocomposites[M]//Poly(vinyl chloride) based composites and nanocomposites. Cham: Springer International Publishing, 2023: 293-318. |
| [32] | LIU Jianshu, CAO Yang. Experimental study on the surface tension of magnetized water[J]. International Communications in Heat and Mass Transfer, 2021, 121: 105091. |
| [33] | CHEN Long, LI Chuan jun, REN Zhong ming. Variation of surface tension of water in high magnetic field[J]. Advanced Materials Research, 2013, 750/751/752: 2279-2282. |
| [34] | LATIFA Sirine BEN, Hélène CHEAP-CHARPENTIER, PERROT Hubert, et al. Effects of magnetic field on homogeneous and heterogeneous precipitation of calcium carbonate[J]. ChemElectroChem, 2023, 10(14): e202300105. |
| [35] | 高洪江. 外加磁场对不同基体材料表面化学镀工艺的影响研究[D]. 青岛: 青岛科技大学, 2016. |
| GAO Hongjiang. Study on the effect of external magnetic field on electroless plating process of different substrate materials[D]. Qingdao: Qingdao University of Science & Technology, 2016. | |
| [36] | SUN Nana, JIANG Huayi, LIANG Aiguo, et al. Influences of material types on the mechanisms of crystal growth in an aggregate scaling device[J]. International Communications in Heat and Mass Transfer, 2019, 108: 104303. |
| [1] | 孙金磊, 廖丹葵, 陈小鹏, 童张法. 超重力-微界面法制备类球形纳米碳酸钙[J]. 化工进展, 2025, 44(7): 3757-3769. |
| [2] | 徐景东, 刘奔, 汪雪琴, 董鹏, 席志祥, 徐人威, 岳源源. FeCu-ZSM-5分子筛的绿色合成及其NH3-SCR性能[J]. 化工进展, 2025, 44(6): 3017-3030. |
| [3] | 薛立新, 董永平, 陈梦瑶, 高从堦. 十二烷基硫酸钠(SDS)和强碱(NaOH)对聚酰胺复合纳滤膜的协同调控机理[J]. 化工进展, 2025, 44(4): 2225-2237. |
| [4] | 刘冬梅, 庄昭霖, 王青, 刁华利, 徐港, 彭艳周, 鲍浩, 李东升. 磷石膏矿化固定CO2制备碳酸钙微粉[J]. 化工进展, 2025, 44(1): 66-74. |
| [5] | 李灏, 孙昱楠, 李健, 陶俊宇, 程占军, 颜蓓蓓, 陈冠益. 陈腐垃圾与原生垃圾共气化特性[J]. 化工进展, 2025, 44(1): 525-537. |
| [6] | 冼学权, 杜芳黎, 刘忠林, 刘婉玉, 黎演明, 龙思宇, 黄华林. 利用PEG/Na2CO3双水相乳液法制备碳酸钙微球及其形成机理[J]. 化工进展, 2024, 43(6): 3221-3231. |
| [7] | 彭李佳, 王银龙, 翟宸, 王琦, 陈小鹏, 童张法. 白云石可控碳化联产氢氧化镁和碳酸钙及其改性[J]. 化工进展, 2024, 43(4): 1981-1991. |
| [8] | 王玉周, 陈增, 曹东鑫, 周杰辉, 安旭, 马天琦. 纳米碳酸钙对nano-CaCO3/PES复合膜结构与性能的影响[J]. 化工进展, 2024, 43(11): 6310-6316. |
| [9] | 王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18. |
| [10] | 丁文金, 刘卓齐, 卢海臣, 孙红娟, 彭同江. CH3COONa-NH4OH-H2O体系下磷石膏矿化CO2-联产高纯CaCO3[J]. 化工进展, 2023, 42(7): 3824-3833. |
| [11] | 李文秀, 杨宇航, 黄艳, 王涛, 王镭, 方梦祥. 二氧化碳矿化高钙基固废制备微细碳酸钙研究进展[J]. 化工进展, 2023, 42(4): 2047-2057. |
| [12] | 郭亚宁, 季军荣, 焦妍惠, 张庆年, 周洲, 韦德恩, 童张法, 李立硕. 机械活化重质碳酸钙制备复合碳酸钙及其对溶液中的Cu2+吸附性能[J]. 化工进展, 2023, 42(11): 5861-5870. |
| [13] | 朱启晨, 吴张永, 王志强, 蒋佳骏, 李翔. 低温下硅油基纳米磁流体沉降稳定性与黏度特性[J]. 化工进展, 2023, 42(10): 5101-5110. |
| [14] | 陈欢欢, 高伟洪, 陈凯凯, 张之悦, 赵小燕. 光子晶体结构色纺织材料的制备及应用研究进展[J]. 化工进展, 2022, 41(8): 4327-4340. |
| [15] | 肖毅, 王兵兵, 于旭亮, 王鑫, 蔡汉友. 换热壁面碳酸钙吸附与脱水行为的分子动力学[J]. 化工进展, 2022, 41(8): 4077-4085. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |