化工进展 ›› 2025, Vol. 44 ›› Issue (11): 6231-6243.DOI: 10.16085/j.issn.1000-6613.2024-1653
• 能源加工与技术 • 上一篇
郭恩岐1(
), 史博会1,2(
), 陈好奇1, 宋尚飞1, 刘礼豪1, 隋金昊1, 朱羽墨1, 宫敬1,2
收稿日期:2024-10-13
修回日期:2024-10-28
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
史博会
作者简介:郭恩岐(2000—),女,博士研究生,研究方向为天然气水合物流动保障技术。E-mail:enqig@foxmail.com。
基金资助:
GUO Enqi1(
), SHI Bohui1,2(
), CHEN Haoqi1, SONG Shangfei1, LIU Lihao1, SUI Jinhao1, ZHU Yumo1, GONG Jing1,2
Received:2024-10-13
Revised:2024-10-28
Online:2025-11-25
Published:2025-12-08
Contact:
SHI Bohui
摘要:
随着海洋油气资源不断走向深海,深水多相管流体系中因水合物生成引发堵塞的风险显著加剧。研究不同油气资源禀赋体系内多相管流中水合物生成沉积/堵塞的演变规律,是从定性分析转变为定量核算多相管路水合物堵塞风险、提出经济高效解决方案的关键。本文围绕近年来多相管流体系水合物沉积/堵塞的研究成果,阐述了水合物颗粒生成阶段受传热与传质等内在因素影响的作用规律,解析了水合物颗粒发生聚并及其与管壁界面黏附沉积形成水合物层的关键影响因素,梳理了水合物在含蜡、粉砂等复杂携固多相流动体系中生成、沉积的作用机制。最后设计构建了水合物沉积定量计算模型,并基于此提出了将机理-数据耦合方法引入水合物堵塞概率预测模型的研究思路,分析了制订堵塞定量评价指标的优势,为未来应用数据技术有效解决深水多相管流中水合物沉积/堵塞问题提供了重要技术支持。
中图分类号:
郭恩岐, 史博会, 陈好奇, 宋尚飞, 刘礼豪, 隋金昊, 朱羽墨, 宫敬. 多相管流体系水合物沉积/堵塞研究进展[J]. 化工进展, 2025, 44(11): 6231-6243.
GUO Enqi, SHI Bohui, CHEN Haoqi, SONG Shangfei, LIU Lihao, SUI Jinhao, ZHU Yumo, GONG Jing. Research progress of hydrate deposition/blockage in multiphase pipeline[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6231-6243.
| [1] | 陈光进, 孙长宇, 马庆兰. 气体水合物科学与技术[M]. 北京: 化学工业出版社, 2008. |
| CHEN Guangjin, SUN Changyu, MA Qinglan. Gas hydrate science and technology[M]. Beijing: Chemical Industry Press, 2008. | |
| [2] | SLOAN DENDY E, Carolyn A KOH. Clathrate hydrates of natural gases[M].3rd ed. Boca Raton: CRC Press, 2007. |
| [3] | 樊栓狮. 天然气水合物研究进展[C]//2005’天然气化工与一碳化工技术信息交流会, 成都, 2009: 22-25. |
| FAN Shuanshi. An advance in the research on natural gas hydrate[C]//2005’Natural Gas Chemical and One Carbon Chemical Technology Information Exchange Conference. Chengdu, 2009: 22-25. | |
| [4] | SLOAN DENDY E. Natural gas hydrates in flow assurance[M]. Oxford: Gulf Professional Publishing, 2010. |
| [5] | TURNER Doug, TALLEY Larry. Hydrate inhibition via cold flow-no chemicals or insulation[C]//6th International Conference on Gas Hydrates. Vancouver, Canada, 2008. |
| [6] | TURNER D J, MILLER K T, SLOAN D E. Direct conversion of water droplets to methane hydrate in crude oil[J]. Chemical Engineering Science, 2009, 64(23): 5066-5072. |
| [7] | DING Lin, SHI Bohui, WANG Jiaqi, et al. Hydrate deposition on cold pipe walls in water-in-oil (W/O) emulsion systems[J]. Energy & Fuels, 2017, 31(9): 8865-8876. |
| [8] | DE OLIVEIRA Marcia Cristina Khalil, TEIXEIRA Adriana, VIEIRA Lenise Couto, et al. Flow assurance study for waxy crude oils[J]. Energy & Fuels, 2012, 26(5): 2688-2695. |
| [9] | 丁麟, 史博会, 吕晓方, 等. 天然气水合物的生成对浆液流动稳定性影响综述[J]. 化工进展, 2016, 35(10): 3118-3128. |
| DING Lin, SHI Bohui, Xiaofang LYU, et al. Investigation on the effects of natural gas hydrate formation on slurry flow stability[J]. Chemical Industry and Engineering Progress, 2016, 35(10): 3118-3128. | |
| [10] | 宋光春, 李玉星, 王武昌, 等. 油气管道水合物堵塞机理研究进展[J]. 化工进展, 2018, 37(7): 2473-2481. |
| SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Review of hydrate plugging mechanisms in oil and gas transport pipelines[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2473-2481. | |
| [11] | TURNER Douglas J. Clathrate hydrate formation in water-in-oil dispersions[D]. Colorado: Colorado School of Mines, 2005. |
| [12] | TURNER Douglas J, MILLER Kelly T, SLOAN E Dendy. Methane hydrate formation and an inward growing shell model in water-in-oil dispersions[J]. Chemical Engineering Science, 2009, 64(18): 3996-4004. |
| [13] | VIJAYAMOHAN Prithvi. Experimental investigation of gas hydrate formation, plugging and transportability in partially dispersed and water continuous systems[D]. Colorado: Colorado School of Mines, 2016. |
| [14] | AKHFASH Masoumeh, AMAN Zachary M, Sang Yoon AHN, et al. Gas hydrate plug formation in partially-dispersed water-oil systems[J]. Chemical Engineering Science, 2016, 140: 337-347. |
| [15] | Ahmad AA-MAJID, LEE Wonhee, SRIVASTAVA Vishal, et al. The study of gas hydrate formation and particle transportability using a high pressure flowloop[C]//Offshore Technology Conference. Houston, Texas, USA: OTC, 2016: OTC-27276-MS. |
| [16] | JOSHI Sanjeev Kumar, SLOAN E Dendy, Cherry KOH, et al. Micromechanical adhesion force measurements between cyclopentane hydrate particles in water[C]//7th International Conference of Gas Hydrates. Edinburgh, Scotland, 2011. |
| [17] | SONG Guangchun, LI Yuxing, WANG Wuchang, et al. Investigation of hydrate plugging in natural gas+diesel oil+water systems using a high-pressure flow loop[J]. Chemical Engineering Science, 2017, 158: 480-489. |
| [18] | JOSHI Sanjeev V, GRASSO Giovanny A, LAFOND Patrick G, et al. Experimental flowloop investigations of gas hydrate formation in high water cut systems[J]. Chemical Engineering Science, 2013, 97: 198-209. |
| [19] | ZERPA Luis Eduardo, AMAN Zachary Mark, JOSHI Sanjeev, et al. Predicting hydrate blockages in oil, gas and water-dominated systems[C]//Offshore Technology Conference. Houston, Texas, USA: OTC, 2012: OTC-23490-MS. |
| [20] | LINGELEM M N, MAJEED A I, STANGE E. Industrial experience in evaluation of hydrate formation, inhibition, and dissociation in pipeline design and operation[J]. Annals of the New York Academy of Sciences, 1994, 715(1): 75-93. |
| [21] | NICHOLAS Joseph W. Hydrate deposition in water saturated liquid condensate pipelines[D]. Colorado: Colorado School of Mines, 2008. |
| [22] | DI LORENZO Mauricio, AMAN Zachary M, SANCHEZ SOTO Gerardo, et al. Hydrate formation in gas-dominant systems using a single-pass flowloop[J]. Energy & Fuels, 2014, 28(5): 3043-3052. |
| [23] | DI LORENZO Mauricio, AMAN Zachary M, KOZIELSKI Karen, et al. Underinhibited hydrate formation and transport investigated using a single-pass gas-dominant flowloop[J]. Energy & Fuels, 2014, 28(11): 7274-7284. |
| [24] | ARJMANDI Mosayyeb, TOHIDI Bahman, DANESH Ali, et al. Is subcooling the right driving force for testing low-dosage hydrate inhibitors?[J]. Chemical Engineering Science, 2005, 60(5): 1313-1321. |
| [25] | KUANG Li, FAN Shuanshi. Effect of magnetization of water on induction time and growth period of natural gas hydrate[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(S1): 81-85. |
| [26] | JIANG H, JORDAN K D. Comparison of the properties of xenon, methane, and carbon dioxide hydrates from equilibrium and nonequilibrium molecular dynamics simulations[J]. The Journal of Physical Chemistry C, 2010, 114(12): 5555-5564. |
| [27] | LINGA Praveen, DARABOINA Nagu, RIPMEESTER John A, et al. Enhanced rate of gas hydrate formation in a fixed bed column filled with sand compared to a stirred vessel[J]. Chemical Engineering Science, 2012, 68(1): 617-623. |
| [28] | ZHANG Chunsong, FAN Shuanshi, LIANG Deqing, et al. Effect of additives on formation of natural gas hydrate[J]. Fuel, 2004, 83(16): 2115-2121. |
| [29] | 黄婷, 李长俊, 李清平, 等. 全透明高压反应釜甲烷水合物动力学实验[J]. 化工进展, 2020, 39(7): 2624-2631. |
| HUANG Ting, LI Changjun, LI Qingping, et al. Experiment on methane hydrate kinetics in a high-pressure transparent autoclave[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2624-2631. | |
| [30] | 丁麟, 史博会, 吕晓方, 等. 天然气水合物形成与生长影响因素综述[J]. 化工进展, 2016, 35(1): 57-64. |
| DING Lin, SHI Bohui, Xiaofang LYU, et al. Review of influence factors of natural gas hydrate formation and growth[J]. Chemical Industry and Engineering Progress, 2016, 35(1): 57-64. | |
| [31] | SHI Bohui, GONG Jing, SUN Changyu, et al. An inward and outward natural gas hydrates growth shell model considering intrinsic kinetics, mass and heat transfer[J]. Chemical Engineering Journal, 2011, 171(3): 1308-1316. |
| [32] | MARQUES Daniela C, BASSANI Carlos L, KAKITANI Celina, et al. Mapping wall deposition trends of gas hydrates: Ⅰ. Gas-water-hydrate systems[J]. Industrial & Engineering Chemistry Research, 2022, 61(5): 2333-2345. |
| [33] | DAVIES Simon R, BOXALI John A, Carolyn A KOH, et al. Predicting hydrate-plug formation in a subsea tieback[J]. SPE Production & Operations, 2009, 24(4): 573-578. |
| [34] | SAKURAI Shunsuke, HOSKIN Ben, CHOI Joel, et al. Investigating hydrate formation rate and the viscosity of hydrate slurries in water-dominant flow: Flowloop experiments and modelling[J]. Fuel, 2021, 292: 120193. |
| [35] | SUN Lingjie, SUN Huilian, WANG Tian, et al. Self-driven and directional transport of water during hydrate formation: Potential application in seawater desalination and dewatering[J]. Desalination, 2023, 548: 116299. |
| [36] | BASSANI Carlos L, MELCHUNA Aline M, Ana CAMEIRÃO, et al. A multiscale approach for gas hydrates considering structure, agglomeration, and transportability under multiphase flow conditions: Ⅰ. Phenomenological model[J]. Industrial & Engineering Chemistry Research, 2019, 58(31): 14446-14461. |
| [37] | BASSANI Carlos L, Amadeu K SUM, HERRI Jean-Michel, et al. A multiscale approach for gas hydrates considering structure, agglomeration, and transportability under multiphase flow conditions: Ⅱ. Growth kinetic model[J]. Industrial & Engineering Chemistry Research, 2020, 59(5): 2123-2144. |
| [38] | BASSANI Carlos L, KAKITANI Celina, HERRI Jean-Michel, et al. A multiscale approach for gas hydrates considering structure, agglomeration, and transportability under multiphase flow conditions: Ⅲ. Agglomeration model[J]. Industrial & Engineering Chemistry Research, 2020, 59(34): 15357-15377. |
| [39] | BASSANI Carlos L, ENGEL Michael. Transient model of hydrate pore sealing applied to oil-dominant systems[C]//10th International Conference on Gas Hydrates (ICGH10). Singapore, 2023. |
| [40] | LIAO Qingyun, SHI Bohui, SONG Shangfei, et al. Molecular insights into methane hydrate growth in the presence of wax molecules[J]. Fuel, 2022, 324: 124743. |
| [41] | JEONG Kwanghee, METAXAS Peter J, HELBERG Anrie, et al. Gas hydrate nucleation in acoustically levitated water droplets[J]. Chemical Engineering Journal, 2022, 433: 133494. |
| [42] | FU M W, WANG J L. Size effects in multi-scale materials processing and manufacturing[J]. International Journal of Machine Tools and Manufacture, 2021, 167: 103755. |
| [43] | BARWOOD Mark T J, METAXAS Peter J, Vincent W S LIM, et al. Extracting nucleation rates from ramped temperature measurements of gas hydrate formation[J]. Chemical Engineering Journal, 2022, 450: 137895. |
| [44] | Eric F MAY, METAXAS Peter J, Vincent W S LIM, et al. Progress towards an engineering model for gas hydrate formation[C]//10th International Conference on Gas Hydrates (ICGH10). Singapore, 2023. |
| [45] | ZERPA Luis E, SALAGER Jean-Louis, Carolyn A KOH, et al. Surface chemistry and gas hydrates in flow assurance[J]. Industrial & Engineering Chemistry Research, 2011, 50(1): 188-197. |
| [46] | 陈玉川, 史博会, 李文庆, 等. 水合物浆液非牛顿特性与黏度模型研究进展[J]. 化工进展, 2019, 38(6): 2682-2696. |
| CHEN Yuchuan, SHI Bohui, LI Wenqing, et al. Progress of the non-Newtonian properties of hydrate slurry and viscosity model[J]. Chemical Industry and Engineering Progress, 2019, 38(6): 2682-2696. | |
| [47] | MAJID Ahmad AA, Jose DELGADO-LINARES, PALERMO Thierry, et al. Rheological properties measurements of methane hydrate slurries formed in high water content systems[C]//10th International Conference on Gas Hydrates (ICGH10). Singapore, 2023. |
| [48] | ALHEJAILI Aziz A, DAUBERT Donovan, DARABOINA Nagu, et al. Rheological properties of natural gas hydrates[C]//10th International Conference on Gas Hydrates (ICGH10). Singapore, 2023. |
| [49] | PANDEY Gaurav, SANGWAI Jitendra S. High pressure rheological studies of methane hydrate slurries formed from water-hexane, water-heptane, and water-decane multiphase systems[J]. Journal of Natural Gas Science and Engineering, 2020, 81: 103365. |
| [50] | REBELLO Ana C G A, SANDOVAL Gustavo A B, NACCACHE Mônica F, et al. Challenges and progress on ethane hydrates rheology under high pressure[J]. Geoenergy Science and Engineering, 2023, 227: 211766. |
| [51] | LIU Chenwei, WANG Zhiyuan, TIAN Jinlin, et al. Fundamental investigation of the adhesion strength between cyclopentane hydrate deposition and solid surface materials[J]. Chemical Engineering Science, 2020, 217: 115524. |
| [52] | WANG Weiyang, ZHOU Chenru, LIU Chenwei, et al. Experimental investigation of the adhesion forces/strengths of cyclopentane hydrate in a gas phase[J]. Fuel, 2022, 323: 124359. |
| [53] | LUO Qiang, LIU Zhihui, NING Fulong, et al. Micromechanical tangential force measurements between tetrahydrofuran hydrate particles[J]. Fuel, 2022, 316: 123073. |
| [54] | PICKARTS Marshall, RAVICHANDRAN Sriram, Jose DELGADO-LINARES, et al. Gas hydrate deposit formation in transient flowloop tests and mitigation with a surface treatment[J]. Fuel, 2022, 311: 122532. |
| [55] | LIU Chenwei, ZHOU Chenru, LI Mingzhong, et al. Direct measurements of the interactions between methane hydrate particle-particle/droplet in high pressure gas phase[J]. Fuel, 2023, 332: 126190. |
| [56] | AMAN Zachary M, LEITH William J, GRASSO Giovanny A, et al. Adhesion force between cyclopentane hydrate and mineral surfaces[J]. Langmuir, 2013, 29(50): 15551-15557. |
| [57] | MATEUS Juan Diaz, AMAN Zachary, NORRIS Bruce, et al. Impact of internal CO2 corrosion of mild steel subsea pipelines on solid hydrate particles[C]//NACE Corrosion, 2021. |
| [58] | ZHOU Shidong, REN Zhenhao, YU Yisong, et al. Study of hydrate particle morphology and cohesive force in the presence of wax and glycine[J]. Energy & Fuels, 2024, 38(6): 5064-5074. |
| [59] | LIU Yang, WU Chengxuan, Xiaofang LYU, et al. Hydrate growth and agglomeration in the presence of wax and anti-agglomerant: A morphology study and cohesive force measurement[J]. Fuel, 2023, 342: 127782. |
| [60] | ANDERSEN SVEINSSON Henrik, Kjetil THØGERSEN, Anders MALTHE-SØRENSSEN. Grain boundary behavior of hydrate-hydrate and ice-ice bicrystals: Molecular dynamics insights[C]//10th International Conference on Gas Hydrates (ICGH10). Singapore, 2023. |
| [61] | MA Rui, XIAO Senbo, CHANG Yuanhao, et al. An interfacial gas-enrichment strategy for mitigating hydrate adhesion and blockage[J]. Chemical Engineering Journal, 2023, 453: 139918. |
| [62] | 王唯. 含蜡油包水乳状液体系水合物生成及聚集机理研究[D]. 北京: 中国石油大学(北京), 2020. |
| WANG Wei. Study on mechanisms of hydrate formation and agglomeration in waxy water-in-oil emulsion[D]. Beijing: China University of Petroleum (Beijing), 2020. | |
| [63] | ZHANG Yifan, XIAO Senbo, MA Rui, et al. Characterization of the quasi-liquid layer on gas hydrates with molecular dynamics simulations[J]. Fuel, 2024, 357: 129905. |
| [64] | MARQUES Daniela, KAKITANI Celina A. MARCELINO NETO Moisés,et al. Analysis of the mechanism involved in hydrate deposition under dynamic multiphase flow conditions[C]//10th International Conference on Gas Hydrates (ICGH10). Singapore, 2023. |
| [65] | HU Haochen, SONG Kunming, XU Yue, et al. Study on a numerical model of hydrate bed critical velocity in solid-liquid two-phase flow pipelines[J]. Energy & Fuels, 2023, 37(7): 4960-4972. |
| [66] | 刘哲源. 天然气输运管道水合物堵塞机理与特性研究[D]. 大连: 大连理工大学, 2021. |
| LIU Zheyuan. Study on hydrate blockage mechanism and characteristic in natural gas transportation pipeline[D]. Dalian: Dalian University of Technology, 2021. | |
| [67] | DORON Pinchas, BARNEA Dvora. A three-layer model for solid-liquid flow in horizontal pipes[J]. International Journal of Multiphase Flow, 1993, 19(6): 1029-1043. |
| [68] | DARABOINA Nagu, PACHITSAS Stylianos, VON SOLMS Nicolas. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems[J]. Fuel, 2015, 148: 186-190. |
| [69] | 柳扬. 蜡与水合物共存W/O体系流动及沉积规律研究[D]. 北京: 中国石油大学(北京), 2019. |
| LIU Yang. Study on the flow and deposition mechanisms of W/O systems containing wax and hydrates[D]. Beijing: China University of Petroleum (Beijing), 2019. | |
| [70] | 史博会. 天然气水合物处理技术[M]. 北京: 石油工业出版社, 2021. |
| SHI Bohui. Natural gas hydrate treatment technology[M]. Beijing: Petroleum Industry Press, 2021. | |
| [71] | LINO Luiz H M, SERRIS Eric, LAVALLE Gianluca, et al. Experimental investigation of the effect of paraffin on the hydrate nucleation, growth and transportability[C]//10th International Conference on Gas Hydrates (ICGH10). Singapore, 2023. |
| [72] | WANG Lingban, BU Yuhao, XU Zhenbin, et al. Study on the hydrate formation rate and the influence mechanism on it in wax contained oil-water system[C]//10th International Conference on Gas Hydrates (ICGH10). Singapore, 2023. |
| [73] | WANG Limin, DUAN Jinrong, LIU Bei, et al. The effect of ethylene-vinyl acetate copolymer on the formation process of wax crystals and hydrates[J]. Chinese Journal of Chemical Engineering, 2024, 73: 109-119. |
| [74] | GUO Penghao, SONG Guangchun, NING Yuanxing, et al. Investigation on hydrate growth at oil-water interface: In the presence of wax[J]. Energy & Fuels, 2021, 35(15): 11884-11895. |
| [75] | XIAO Yanyun, ZHOU Shidong, LI Xiaoyan, et al. Kinetic properties of CO2 hydrate formation in the wax-containing system at different concentrations[J]. Energy & Fuels, 2023, 37(4): 2972-2982. |
| [76] | LIU Zhiming, GENG Xin, GAO Yan, et al. Effect of wax crystal on the kinetic and morphology of gas hydrate deposition in water-in-oil emulsions[J]. Fuel, 2022, 330: 125501. |
| [77] | 叶建良, 秦绪文, 谢文卫, 等. 中国南海天然气水合物第二次试采主要进展[J]. 中国地质, 2020, 47(3): 557-568. |
| YE Jianliang, QIN Xuwen, XIE Wenwei, et al. Main progress of the second gas hydrate trial production in the South China Sea[J]. Geology in China, 2020, 47(3): 557-568. | |
| [78] | 陈玉川. 微米级颗粒分散体系内水合物生成与流动规律研究[D]. 北京: 中国石油大学(北京), 2021. |
| CHEN Yuchuan. Study on hydrate formation and slurry flow properties in the dispersed systems with micron-sized particles[D]. Beijing: China University of Petroleum (Beijing), 2021. | |
| [79] | LIU Lihao, SHI Bohui, SONG Shangfei, et al. Co-deposition characteristics of hydrates and sands in gas-salty water-sands flow system[J]. Fuel, 2023, 346: 128276. |
| [80] | ZHANG Jianbo, CHEN Longqiao, PAN Shaowei, et al. Experimental investigation on hydrate plugging formation in horizontal single-pass gas-dominant flows[J]. Energy & Fuels, 2022, 36(7): 3570-3579. |
| [81] | KONG Qingwen, WANG Zhiyuan, FU Weiqi. Evolution mechanism of hydrate plugging in water-dominated bubbly flow[C]//10th International Conference on Gas Hydrates (ICGH10). Singapore, 2023. |
| [82] | NORRIS Bruce W E, CHARLTON Thomas B, ZERPA Luis E, et al. Mechanistic predictions of hydrate formation in gas condensate systems: A new extension for OLGA[C]//10th International Conference on Gas Hydrates (ICGH10). Singapore, 2023. |
| [83] | GUO Enqi, SHI Bohui, SONG Shangfei, et al. Mechanistic model of hydrate deposition processes in horizontal oil-dominated flows[C]//ECGH 2024—European Conference on Gas Hydrate. Trieste, 2024. |
| [84] | 李硕, 刘天源, 黄锋, 等. 工业互联网中数字孪生系统的机理+数据融合建模方法[J]. 信息通信技术与政策, 2022(10): 52-61. |
| LI Shuo, LIU Tianyuan, HUANG Feng, et al. Mechanism + data fusion modeling method in digital twin system for industrial internet[J]. Information and Communications Technology and Policy, 2022(10): 52-61. | |
| [85] | TURNER Douglas J, RENSING Patrick, GRASSO Giovanny, et al. A probabilistic approach to hydrate blockage prediction: A petition to forgo precision for accuracy[C]//10th International Conference on Gas Hydrates (ICGH10). Singapore, 2023. |
| [86] | WANG Jiguang, WANG Qi, MENG Yang, et al. Flow characteristic and blockage mechanism with hydrate formation in multiphase transmission pipelines: In-situ observation and machine learning predictions[J]. Fuel, 2022, 330: 125669. |
| [87] | DUAN Xu, SHI Bohui, RUAN Chaoyu, et al. Quantitative assessment of hydrate blockage risk in pipelines based on reliability theory[J]. Journal of Natural Gas Science and Engineering, 2022, 98: 104345. |
| [88] | 段旭. 多相混输管道水合物堵塞风险定量评价方法研究[D]. 北京: 中国石油大学(北京), 2023. |
| DUAN Xu. Quantitative assessment of hydrate blockage risk in pipelines based on reliability theory[D]. Beijing: China University of Petroleum (Beijing), 2023. | |
| [89] | BRAWLEY Tom. Emissions reduction via new risk based hydrate management strategy[C]//10th International Conference on Gas Hydrates (ICGH10). Singapore, 2023. |
| [90] | DUAN Xu, SONG Shangfei, SHI Bohui, et al. A method to quantify hydrate blockage risk in oil-in-water emulsion flow based on experiments[C]//10th International Conference on Gas Hydrates (ICGH10). Singapore, 2023. |
| [1] | 秦菲, 张志, 宋光春, 王武昌, 李玉星, 王世鑫, 何思成, 王江妍. 水合物储氢分子动力学行为研究进展[J]. 化工进展, 2025, 44(S1): 112-123. |
| [2] | 龙回龙, 唐浩然, 马源, 秦云锋, 包祎辉, 张增富. 典型水合物相图的数值计算方法[J]. 化工进展, 2025, 44(8): 4871-4878. |
| [3] | 沈宪琨, 贾志勇, 蓝晓程, 王铁峰. CFD-PBM耦合模型用于浆态床反应器的研究进展[J]. 化工进展, 2025, 44(8): 4408-4418. |
| [4] | 王雅彬, 赵碧丹, 徐繁, 兰斌, 王军武. 基于结构双流体模型的循环流化床全回路模拟[J]. 化工进展, 2025, 44(8): 4500-4512. |
| [5] | 卢玉成, 黄涛, 罗亚军, 刘佳辉, 巩飞艳, 严超宇, 刘晓星. 水悬浮造粒搅拌釜内气液固三相混合特性CFD模拟[J]. 化工进展, 2025, 44(8): 4556-4566. |
| [6] | 杨文明, 谢林生, 王玉, 马玉录, 李果. SPH-DEM耦合模拟方法在啮合型双螺杆挤出机中的应用[J]. 化工进展, 2025, 44(7): 3748-3756. |
| [7] | 甄箫斐, 杨特勃, 董缇, 齐永豪, 刘佳. 多孔介质强化水合物储气性能研究进展[J]. 化工进展, 2025, 44(6): 3413-3431. |
| [8] | 郭伟, 刘传平, 童莉葛, 王立. 新型热扩散式测量技术助力气液多相流监测[J]. 化工进展, 2025, 44(4): 1781-1785. |
| [9] | 王佳琪, 刘佳兴, 魏皓琦, 周昕霖, 程传晓, 葛坤. 鼠李糖脂强化CO2水合物生成[J]. 化工进展, 2025, 44(4): 1998-2007. |
| [10] | 高健, 周相君, 楚化强. 剪切气流中液滴袋蕊破碎特性分析[J]. 化工进展, 2025, 44(4): 1898-1906. |
| [11] | 黄林滨, 李天池, 李灿, 李宁, 翁春生. 基于DeepViT和彩虹散射的含颗粒液滴多参数提取方法[J]. 化工进展, 2025, 44(4): 1859-1866. |
| [12] | 高帅, 马永丽, 刘明言. 微气泡气液固流化床气液传质特性[J]. 化工进展, 2025, 44(10): 5590-5598. |
| [13] | 黄婷, 李丹, 谢振强, 姚海元, 付强, 李焱, 杨博, 秦蕊. 凝析气管道水合物与蜡耦合沉积堵塞及解堵研究进展[J]. 化工进展, 2025, 44(10): 5663-5672. |
| [14] | 付骏, 徐纯刚, 李云昊, 李小森. 盐水体系中CO2水合物形成与碳封存研究进展[J]. 化工进展, 2025, 44(10): 5926-5940. |
| [15] | 张强, 孙楠, 郑俊杰, 吴强, 刘传海, 李元吉. 混合热力学促进剂对水合物法分离回收瓦斯的影响[J]. 化工进展, 2025, 44(1): 192-201. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |