化工进展 ›› 2025, Vol. 44 ›› Issue (11): 6270-6281.DOI: 10.16085/j.issn.1000-6613.2024-1638
• 能源加工与技术 • 上一篇
蒲田1(
), 胡建清2,3, 危娟1, 周红军2,3,4, 徐春明2,3,4, 周颖4,5(
)
收稿日期:2024-10-12
修回日期:2024-11-17
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
周颖
作者简介:蒲田(1993—),男,博士研究生,研究方向为低碳化工系统工程、供应链优化。E-mail:pascalpt@outlook.com。
基金资助:
PU Tian1(
), HU Jianqing2,3, WEI Juan1, ZHOU Hongjun2,3,4, XU Chunming2,3,4, ZHOU Ying4,5(
)
Received:2024-10-12
Revised:2024-11-17
Online:2025-11-25
Published:2025-12-08
Contact:
ZHOU Ying
摘要:
碳中和能源战略背景下,碳捕集、利用与封存(CCUS)驱油技术的应用是碳减排与油田提质增产协同推进的重要举措。针对国内CCUS驱油产业发展缓慢、碳源/碳汇匹配技术经济性考虑不足的问题,本文提出混合整数非线性规划模型(MINLP)为主要特征的碳源/碳汇供应链规划优化与设计方法,采用空间平面网格划分、地理坐标量化、路径规划、输送方式识别、CO2捕集工艺经济分析等建模策略,推导CCUS驱油项目经济效益最大化的目标函数,并以东营地区CCUS驱油技术应用为案例开展研究。规划设计结果表明,五年规划周期内东营地区布局CCUS驱油产业可实现CO2减排约6×106t/a的环境效益和95.38×108CNY/a的经济效益。在不同边界因素和参数下对环境经济效益进行分析,揭示CO2输运方式、规划周期时间效应及碳减排深度对碳源/碳汇供应链规划与设计的影响规律,研究结果为东营地区规划布局CCUS驱油技术产业决策提供参考。
中图分类号:
蒲田, 胡建清, 危娟, 周红军, 徐春明, 周颖. 碳源/碳汇供应链规划优化与概念设计: 以东营地区CCUS驱油技术应用为例[J]. 化工进展, 2025, 44(11): 6270-6281.
PU Tian, HU Jianqing, WEI Juan, ZHOU Hongjun, XU Chunming, ZHOU Ying. Optimization and conceptual design of carbon source/carbon sink supply chain planning: CCUS-enhanced oil recovery technology application in Dongying area[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6270-6281.
| 编号 | 碳排放量 /t·a-1 | 碳源类型 | 捕集成本 /CNY·t-1 |
|---|---|---|---|
| 1 | 2.2×105 | 升级改造装置和生产过程排放 | 260 |
| 2 | 1.68×104 | 高温高压余热锅炉系统 | 340 |
| 3 | 1.2×105 | 外购蒸汽、电力 | 412 |
| 4 | 1.0×106 | 原油加工、燃料气燃烧 | 120 |
| 5 | 1.5×104 | 厌氧发酵产沼气,通过内燃机并网发电 | 109 |
| 6 | 1.02×106 | 燃煤锅炉发电、供汽 | 245 |
| 7 | 1.3×103 | 焚烧炉 | 412 |
| 8 | 1.05×106 | 电解槽/电解盐水、生产烧碱 | 112 |
| 9 | 1.2×104 | 生活垃圾焚烧发电项目 | 405 |
| 10 | 1.365×105 | 生产线、焚烧炉 | 364 |
| 11 | 2.4×105 | 生物质燃烧 | 105 |
| 12 | 2.08×105 | 加热炉 | 265 |
| 13 | 1.37×104 | 燃煤锅炉 | 248 |
| 14 | 5.15×106 | 原油加工、燃料气燃烧 | 104 |
| 15 | 3.6×106 | 电力、燃煤锅炉 | 218 |
| 16 | 4.58×106 | 电力、燃煤锅炉 | 204 |
| 17 | 2.08×106 | 原油加工、燃料气燃烧 | 110 |
| 18 | 1.8×106 | 化学产品制造、燃料气燃烧 | 215 |
表1 东营地区部分碳源类型和CO2排放规模
| 编号 | 碳排放量 /t·a-1 | 碳源类型 | 捕集成本 /CNY·t-1 |
|---|---|---|---|
| 1 | 2.2×105 | 升级改造装置和生产过程排放 | 260 |
| 2 | 1.68×104 | 高温高压余热锅炉系统 | 340 |
| 3 | 1.2×105 | 外购蒸汽、电力 | 412 |
| 4 | 1.0×106 | 原油加工、燃料气燃烧 | 120 |
| 5 | 1.5×104 | 厌氧发酵产沼气,通过内燃机并网发电 | 109 |
| 6 | 1.02×106 | 燃煤锅炉发电、供汽 | 245 |
| 7 | 1.3×103 | 焚烧炉 | 412 |
| 8 | 1.05×106 | 电解槽/电解盐水、生产烧碱 | 112 |
| 9 | 1.2×104 | 生活垃圾焚烧发电项目 | 405 |
| 10 | 1.365×105 | 生产线、焚烧炉 | 364 |
| 11 | 2.4×105 | 生物质燃烧 | 105 |
| 12 | 2.08×105 | 加热炉 | 265 |
| 13 | 1.37×104 | 燃煤锅炉 | 248 |
| 14 | 5.15×106 | 原油加工、燃料气燃烧 | 104 |
| 15 | 3.6×106 | 电力、燃煤锅炉 | 218 |
| 16 | 4.58×106 | 电力、燃煤锅炉 | 204 |
| 17 | 2.08×106 | 原油加工、燃料气燃烧 | 110 |
| 18 | 1.8×106 | 化学产品制造、燃料气燃烧 | 215 |
| 编号 | 注气井数量/个 | 封存规模 /t·d-1 | 编号 | 注气井数量/个 | 封存规模 /t·d-1 |
|---|---|---|---|---|---|
| 1 | 18 | 1080 | 12 | 9 | 540 |
| 2 | 21 | 1260 | 13 | 20 | 1200 |
| 3 | 25 | 1500 | 14 | 19 | 1140 |
| 4 | 7 | 420 | 15 | 9 | 540 |
| 5 | 25 | 1500 | 16 | 7 | 420 |
| 6 | 29 | 1740 | 17 | 15 | 900 |
| 7 | 25 | 1500 | 18 | 14 | 840 |
| 8 | 10 | 600 | 19 | 7 | 420 |
| 9 | 8 | 480 | 20 | 5 | 300 |
| 10 | 11 | 660 | 21 | 5 | 300 |
| 11 | 10 | 600 |
表2 东营地区各加气站注气井数量和CO2封存规模
| 编号 | 注气井数量/个 | 封存规模 /t·d-1 | 编号 | 注气井数量/个 | 封存规模 /t·d-1 |
|---|---|---|---|---|---|
| 1 | 18 | 1080 | 12 | 9 | 540 |
| 2 | 21 | 1260 | 13 | 20 | 1200 |
| 3 | 25 | 1500 | 14 | 19 | 1140 |
| 4 | 7 | 420 | 15 | 9 | 540 |
| 5 | 25 | 1500 | 16 | 7 | 420 |
| 6 | 29 | 1740 | 17 | 15 | 900 |
| 7 | 25 | 1500 | 18 | 14 | 840 |
| 8 | 10 | 600 | 19 | 7 | 420 |
| 9 | 8 | 480 | 20 | 5 | 300 |
| 10 | 11 | 660 | 21 | 5 | 300 |
| 11 | 10 | 600 |
| 序号 | 碳源位置 | 碳汇位置 | CO2输运量/t·d-1 | 管道建设费用/CNY | 管道输运费用/CNY·d-1 | 罐车输运费用/CNY·d-1 |
|---|---|---|---|---|---|---|
| 1 | 4 | 3 | 1500 | 4.205×107 | 1.58×104 | 0 |
| 2 | 4 | 14 | 1046 | 0 | 0 | 8.9×104 |
| 3 | 5 | 9 | 41 | 0 | 0 | 9.2×102 |
| 4 | 8 | 7 | 1500 | 3.362×107 | 1.263×104 | 0 |
| 5 | 8 | 9 | 117 | 0 | 0 | 4.58×103 |
| 6 | 8 | 10 | 660 | 9.6×106 | 1.5×103 | 0 |
| 7 | 8 | 11 | 600 | 1.923×107 | 2.8×103 | 0 |
| 8 | 11 | 9 | 264 | 0 | 0 | 1.6×104 |
| 9 | 11 | 14 | 94 | 0 | 0 | 3.68×103 |
| 10 | 11 | 20 | 300 | 0 | 0 | 2.1×104 |
| 11 | 14 | 1 | 1080 | 7.562×107 | 2.1×104 | 0 |
| 12 | 14 | 2 | 1260 | 7.569×107 | 2.4×104 | 0 |
| 13 | 14 | 4 | 420 | 0 | 0 | 2.5×104 |
| 14 | 14 | 12 | 540 | 0 | 0 | 9.83×103 |
| 15 | 14 | 13 | 1200 | 2.045×107 | 6.0×103 | 0 |
| 16 | 14 | 16 | 420 | 0 | 0 | 1.0×104 |
| 17 | 14 | 17 | 900 | 4.443×107 | 1.0×104 | 0 |
| 18 | 14 | 21 | 300 | 0 | 0 | 3.23×104 |
| 19 | 17 | 5 | 1500 | 0 | 0 | 8.19×104 |
| 20 | 17 | 6 | 1740 | 6.128×107 | 2.7×104 | 0 |
| 21 | 17 | 8 | 600 | 2.281×107 | 3.4×103 | 0 |
| 22 | 17 | 9 | 59 | 0 | 0 | 2.54×103 |
| 23 | 17 | 15 | 540 | 0 | 0 | 2.34×104 |
| 24 | 17 | 18 | 840 | 3.726×107 | 7.8×103 | 0 |
| 25 | 17 | 19 | 420 | 0 | 0 | 3.0×104 |
表3 碳源/碳汇供应链规划优化结果(规划周期5年)
| 序号 | 碳源位置 | 碳汇位置 | CO2输运量/t·d-1 | 管道建设费用/CNY | 管道输运费用/CNY·d-1 | 罐车输运费用/CNY·d-1 |
|---|---|---|---|---|---|---|
| 1 | 4 | 3 | 1500 | 4.205×107 | 1.58×104 | 0 |
| 2 | 4 | 14 | 1046 | 0 | 0 | 8.9×104 |
| 3 | 5 | 9 | 41 | 0 | 0 | 9.2×102 |
| 4 | 8 | 7 | 1500 | 3.362×107 | 1.263×104 | 0 |
| 5 | 8 | 9 | 117 | 0 | 0 | 4.58×103 |
| 6 | 8 | 10 | 660 | 9.6×106 | 1.5×103 | 0 |
| 7 | 8 | 11 | 600 | 1.923×107 | 2.8×103 | 0 |
| 8 | 11 | 9 | 264 | 0 | 0 | 1.6×104 |
| 9 | 11 | 14 | 94 | 0 | 0 | 3.68×103 |
| 10 | 11 | 20 | 300 | 0 | 0 | 2.1×104 |
| 11 | 14 | 1 | 1080 | 7.562×107 | 2.1×104 | 0 |
| 12 | 14 | 2 | 1260 | 7.569×107 | 2.4×104 | 0 |
| 13 | 14 | 4 | 420 | 0 | 0 | 2.5×104 |
| 14 | 14 | 12 | 540 | 0 | 0 | 9.83×103 |
| 15 | 14 | 13 | 1200 | 2.045×107 | 6.0×103 | 0 |
| 16 | 14 | 16 | 420 | 0 | 0 | 1.0×104 |
| 17 | 14 | 17 | 900 | 4.443×107 | 1.0×104 | 0 |
| 18 | 14 | 21 | 300 | 0 | 0 | 3.23×104 |
| 19 | 17 | 5 | 1500 | 0 | 0 | 8.19×104 |
| 20 | 17 | 6 | 1740 | 6.128×107 | 2.7×104 | 0 |
| 21 | 17 | 8 | 600 | 2.281×107 | 3.4×103 | 0 |
| 22 | 17 | 9 | 59 | 0 | 0 | 2.54×103 |
| 23 | 17 | 15 | 540 | 0 | 0 | 2.34×104 |
| 24 | 17 | 18 | 840 | 3.726×107 | 7.8×103 | 0 |
| 25 | 17 | 19 | 420 | 0 | 0 | 3.0×104 |
| [1] | MIKHAYLOV Alexey, MOISEEV Nikita, ALESHIN Kirill, et al. Global climate change and greenhouse effect[J]. Entrepreneurship and Sustainability Issues, 2020, 7(4): 2897-2913. |
| [2] | World Meteorological Association. State of the global climate 2021: WMO provisional report[R]. Geneva: WMO, 2022: 5. |
| [3] | SCHLEUSSNER Carl-Friedrich, ROGELJ Joeri, SCHAEFFER Michiel, et al. Science and policy characteristics of the Paris Agreement temperature goal[J]. Nature Climate Change, 2016, 6(9): 827-835. |
| [4] | SUN Mingyang, LIU Tianze, WANG Xinlei, et al. Roles of thermal energy storage technology for carbon neutrality[J]. Carbon Neutrality, 2023, 2(1): 12. |
| [5] | 周红军, 周颖, 徐春明. 中国碳中和目标下CO2转化的思考与实践[J]. 化工进展, 2022, 41(6): 3381-3385. |
| ZHOU Hongjun, ZHOU Ying, XU Chunming. Exploration of the CO2 conversion under China’s carbon neutrality goal[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3381-3385. | |
| [6] | 黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695-5708. |
| HUANG Sheng, WANG Jingyu, GUO Pei, et al. Short-term strategy and long-term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695-5708. | |
| [7] | 武强, 涂坤, 曾一凡. “双碳”目标愿景下我国能源战略形势若干问题思考[J]. 科学通报, 2023, 68(15): 1884-1898. |
| WU Qiang, TU Kun, ZENG Yifan. Research on China’s energy strategic situation under the carbon peaking and carbon neutrality goals[J]. Chinese Science Bulletin, 2023, 68(15): 1884-1898. | |
| [8] | COONEY Gregory, LITTLEFIELD James, MARRIOTT Joe, et al. Evaluating the climate benefits of CO2-enhanced oil recovery using life cycle analysis[J]. Environmental Science & Technology, 2015, 49(12): 7491-7500. |
| [9] | DOWELL Niall MAC, FENNELL Paul S, SHAH Nilay, et al. The role of CO2 capture and utilization in mitigating climate change[J]. Nature Climate Change, 2017, 7(4): 243-249. |
| [10] | 杨勇. 中国碳捕集、驱油与封存技术进展及发展方向[J]. 石油学报, 2024, 45(1): 325-338. |
| YANG Yong. Technology progress and development direction of carbon capture, oil-flooding and storage in China[J]. Acta Petrolei Sinica, 2024, 45(1): 325-338. | |
| [11] | 袁士义, 马德胜, 李军诗, 等. 二氧化碳捕集、驱油与埋存产业化进展及前景展望[J]. 石油勘探与开发, 2022, 49(4): 828-834. |
| YUAN Shiyi, MA Desheng, LI Junshi, et al. Progress and prospects of carbon dioxide capture, EOR-utilization and storage industrialization[J]. Petroleum Exploration and Development, 2022, 49(4): 828-834. | |
| [12] | 康宇龙, 白艳伟, 江绍静, 等. 延长石油碳捕集、利用与封存全流程技术特色与工程实践[J]. 应用化工, 2020, 49(7): 1768-1771, 1775. |
| KANG Yulong, BAI Yanwei, JIANG Shaojing, et al. Technical features and engineering practice of Yanchang full-chain carbon capture, utilization and storage project[J]. Applied Chemical Industry, 2020, 49(7): 1768-1771, 1775. | |
| [13] | 陈婉. 搭建碳循环模式 提升碳减排能力 中国石化开建我国首个百万吨级CCUS项目[J]. 环境经济, 2021(13): 58-59. |
| CHEN Wan. Build a carbon cycle model to enhance carbon emission reduction capacity. China Petrochemical started the first million-ton CCUS project in China[J]. Environmental Economy, 2021(13): 58-59. | |
| [14] | 舒华文. 胜利油田百万吨级CCUS输注采关键工程技术[J]. 油气藏评价与开发, 2024, 14(1): 10-17, 41. |
| SHU Huawen. Key engineering technologies of one-million-ton CCUS transportation-injection-extraction in Shengli oilfield[J]. Petroleum Reservoir Evaluation and Development, 2024, 14(1): 10-17, 41. | |
| [15] | 李欣泽, 邹炜杰, 孙晨, 等. 新疆油田某超临界CO2管道安全停输时间预测[J]. 化工进展, 2024, 43(5): 2823-2833. |
| LI Xinze, ZOU Weijie, SUN Chen, et al. Prediction of safe shutdown time of a supercritical CO2 pipeline in Xinjiang oilfield[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2823-2833. | |
| [16] | 刘克峰, 刘陶然, 蔡勇, 等. 二氧化碳捕集技术研究和工程示范进展[J]. 化工进展, 2024, 43(6): 2901-2914. |
| LIU Kefeng, LIU Taoran, CAI Yong, et al. Progress in research and engineering demonstration of CO2 capture technology[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 2901-2914. | |
| [17] | GLOBAL CCS Institute. Technology readiness and costs of CCS[R]. Melbourne: Global CCS institute, 2021: 6. |
| [18] | AGENCY International Energy. Energy technology perspectives 2020-special report on carbon capture utilisation and storage: CCUS in clean energy transitions[R]. Paris: IEA, 2020: 103-108. |
| [19] | MCCOY Sean T. The economics of CO2 transport by pipeline and storage in saline aquifers and oil reservoirs[D]. Pittsburgh: Carnegie Mellon University, 2009. |
| [20] | ONYEBUCHI V E, KOLIOS A, HANAK D P, et al. A systematic review of key challenges of CO2 transport via pipelines[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2563-2583. |
| [21] | YANG Christopher, OGDEN Joan. Determining the lowest-cost hydrogen delivery mode[J]. International Journal of Hydrogen Energy, 2007, 32(2): 268-286. |
| [22] | KNOOPE M M J, RAMÍREZ A, FAAIJ A P C. The influence of uncertainty in the development of a CO2 infrastructure network[J]. Applied Energy, 2015, 158: 332-347. |
| [23] | M M Faruque HASAN, FIRST Eric L, BOUKOUVALA Fani, et al. A multi-scale framework for CO2 capture, utilization, and sequestration: CCUS and CCU[J]. Computers & Chemical Engineering, 2015, 81: 2-21. |
| [24] | BERGHOUT Niels, KURAMOCHI Takeshi, VAN DEN BROEK Machteld, et al. Techno-economic performance and spatial footprint of infrastructure configurations for large scale CO2 capture in industrial zones: A case study for the Rotterdam Botlek area (part A)[J]. International Journal of Greenhouse Gas Control, 2015, 39: 256-284. |
| [25] | BERGHOUT Niels, VAN DEN BROEK Machteld, FAAIJ André. Deployment of infrastructure configurations for large-scale CO2 capture in industrial zones: A case study for the Rotterdam Botlek area (part B)[J]. International Journal of Greenhouse Gas Control, 2017, 60: 24-50. |
| [26] | Federico D’AMORE, BEZZO Fabrizio. Economic optimisation of European supply chains for CO2 capture, transport and sequestration[J]. International Journal of Greenhouse Gas Control, 2017, 65: 99-116. |
| [27] | CALDERÓN Andrés J, PAPAGEORGIOU Lazaros G. Key aspects in the strategic development of synthetic natural gas (BioSNG) supply chains[J]. Biomass and Bioenergy, 2018, 110: 80-97. |
| [28] | MIDDLETON Richard S, Sean YAW. The cost of getting CCS wrong: Uncertainty, infrastructure design, and stranded CO2 [J]. International Journal of Greenhouse Gas Control, 2018, 70: 1-11. |
| [29] | Hélène PILORGÉ, MCQUEEN Noah, MAYNARD Daniel, et al. Cost analysis of carbon capture and sequestration of process emissions from the U.S. industrial sector[J]. Environmental Science & Technology, 2020, 54(12): 7524-7532. |
| [30] | SUN Xiaolong, ALCALDE Juan, BAKHTBIDAR Mahdi, et al. Hubs and clusters approach to unlock the development of carbon capture and storage—Case study in Spain[J]. Applied Energy, 2021, 300: 117418. |
| [31] | GUNAWAN Tubagus Aryandi, LUO Hongxi, GREIG Chris, et al. Shared CO₂ capture, transport, and storage for decarbonizing industrial clusters[J]. Applied Energy, 2024, 359: 122775. |
| [32] | QING Qinli, ZHENG Dengxiang, BING Liu. Ecological risk characterization and assessment of PHAS in the Shengli oil field[J]. Procedia Environmental Sciences, 2011, 10: 1685-1691. |
| [33] | WU Bo, GUO Shuhai, WANG Jianing. Spatial ecological risk assessment for contaminated soil in oiled fields[J]. Journal of Hazardous Materials, 2021, 403: 123984. |
| [34] | SARMA Sayan Sen, SINHA Koushik, Chayanon SUB-R-PA, et al. Optimal distribution of traffic in Manhattan Road networks for minimizing routing-time[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 6799-6820. |
| [35] | 赵小令, 肖晋宇, 侯金鸣, 等. 中国二氧化碳捕集利用和封存技术经济性与规模预测[J]. 石油勘探与开发, 2023, 50(3): 657-668. |
| ZHAO Xiaoling, XIAO Jinyu, HOU Jinming, et al. Economic and scale prediction of CO2 capture, utilization and storage technologies in China[J]. Petroleum Exploration and Development, 2023, 50(3): 657-668. | |
| [36] | 蔡博峰, 李琦, 林千果, 等. 中国二氧化碳捕集、利用与封存(CCUS)报告(2019)[R]. 北京: 生态环境部环境规划院气候变化与环境政策研究中心, 2020: 17-30. |
| CAI Bofeng, LI Qi, LIN Qianguo, et al. China carbon dioxide capture, utilization and storage (CCUS) report (2019)[R]. Beijing: Research Center of Climate Change and Environmental Policy, Environmental Planning Institute, Ministry of Ecology and Environment, 2020: 17-30. | |
| [37] | 秦晶晶. 二氧化碳管道输送技术经济模型研究[J]. 低碳世界, 2023, 13(7): 169-171. |
| QIN Jingjing. Study on technical and economic model of carbon dioxide pipeline transportation[J]. Low Carbon World, 2023, 13(7): 169-171. | |
| [38] | 东营市自然资源和规划局. 东营市矿产资源总体规划[EB/OL]. (2012-10-18) [2024-07-26]. . |
| Dongying Natural Resources and Planning Bureau. Overall planning of mineral resources in Dongying city[EB/OL]. (2012-10-18) [2024-07-26]. . | |
| [39] | 中国石化胜利油田. 齐鲁石化-胜利油田百万吨级CCUS项目入选能源绿色低碳转型典型案例[EB/OL]. (2024-05-21) [2024-08-09]. . |
| Sinopec Shengli Oilfield. The million-ton CCUS project of Qilu Petrochemical-Shengli Oilfield was selected as a typical case of energy green and low-carbon transformation[EB/OL]. (2024-05-21) [2024-08-09]. . | |
| [40] | 赵鲁涛, 顾启宇, 曲直, 等. 2024年国际原油价格分析与趋势预测[J]. 北京理工大学学报(社会科学版), 2024, 26(2): 55-58. |
| ZHAO Lutao, GU Qiyu, QU Zhi, et al. Analysis and projection of international crude oil price in 2024[J]. Journal of Beijing Institute of Technology (Social Sciences Edition), 2024, 26(2): 55-58. | |
| [41] | BESTUZHEVA Ksenia, CHMIELA Antonia, Benjamin MÜLLER, et al. Global optimization of mixed-integer nonlinear programs with SCIP 8[J]. Journal of Global Optimization, 2025, 91(2): 287-310. |
| [1] | 刘哲, 周顺利, 李永祥, 张成喜, 刘宜鹏. 烷基萘合成催化剂研究进展[J]. 化工进展, 2025, 44(S1): 144-158. |
| [2] | 王瑞琪, 刘浩伟, 孙彦丽, 李荣花, 王政, 吴玉花, 吴建波, 张慧, 白红存. 面向高效储氢MOFs的设计构筑与性能调控研究现状分析及展望[J]. 化工进展, 2025, 44(S1): 323-339. |
| [3] | 张鸿武, 胡其会, 赵雪峰, 李玉星, 孟岚, 张利军, 朱建鲁, 王武昌. 陆上CO2管道泄漏风险研究进展[J]. 化工进展, 2025, 44(S1): 462-477. |
| [4] | 王茂仁, 赵安洋, 于婧雯, 时汉峰, 黄启飘, 汪世鹤. 废白土热脱附处理工艺参数及其残渣危险特性[J]. 化工进展, 2025, 44(9): 5442-5449. |
| [5] | 郑钦升, 张朝晖, 邢相栋, 折媛, 李嘉雨. CH3COOH/H2O2浸取体系下钢渣钙组分浸出机制[J]. 化工进展, 2025, 44(9): 5471-5478. |
| [6] | 王浩, 李梦琪, 王庆吉, 王凌匀, 罗臻, 宋权威, 李兴春, 何绪文. 石油污染场地地下水异位修复短程处理工艺[J]. 化工进展, 2025, 44(9): 5491-5502. |
| [7] | 刘克峰, 董卫刚, 胡雪生, 刘陶然, 周华群, 时文, 万子岸, 高飞. 推动二氧化碳捕集、输送、应用和封存发展的政策和举措[J]. 化工进展, 2025, 44(9): 4879-4897. |
| [8] | 薛姿杰, 吴艳, 崔子元, 许关欣, 唐硕, 王彧斐, 马明燕. 基于经济性分析的长周期绿氨合成模型:考虑网电碳排放因子连续变化的影响[J]. 化工进展, 2025, 44(9): 4917-4927. |
| [9] | 吴子锋, 王红娟, 王浩帆, 曹永海, 余皓, 彭峰. 电合成碳酸二甲酯的研究进展[J]. 化工进展, 2025, 44(9): 5033-5042. |
| [10] | 陈嵩嵩, 鲍艾丽, 霍锋, 侯亚慧, 崔改静, 张军平. 人工智能(AI)在复杂化工过程设计中的应用:现状、挑战与展望[J]. 化工进展, 2025, 44(8): 4821-4837. |
| [11] | 黄可儿, 刘佳豪, 李昊明, 周天航, 高金森, 蓝兴英. 基于分子动力学模拟的胺溶剂碳捕集过程自扩散系数[J]. 化工进展, 2025, 44(8): 4352-4364. |
| [12] | 杨傲, 邓苇, 黎勇, 罗婧, 王梓霖, 张俊, 申威峰. 基于热力学拓扑理论的三塔变压精馏分离四氢呋喃/甲醇/乙醇多目标优化设计[J]. 化工进展, 2025, 44(8): 4582-4593. |
| [13] | 董丰莲, 李鹏, 魏志伟, 孙鑫, 徐赫锴, 何畅. 考虑原油采购选择的混炼加工优化[J]. 化工进展, 2025, 44(8): 4648-4656. |
| [14] | 杨嘉聪, 程光旭, 贾彤华, 姜召. 煤制甲醇与绿氢高效耦合新工艺模拟及技术经济分析[J]. 化工进展, 2025, 44(8): 4657-4668. |
| [15] | 贾子葶, 崔子元, 王彧斐. 规整化柔性厂区布局优化策略[J]. 化工进展, 2025, 44(8): 4669-4679. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |