| [1] |
李维宁, 李茁, 李建忠, 等. 废润滑油残渣油与废白土在废润滑油再生的应用[J]. 应用化工, 2021, 50(1): 110-112.
|
|
LI Weining, LI Zhuo, LI Jianzhong, et al. Application of waste lube oil residue and waste clay in the regeneration of waste lube oil[J]. Applied Chemical Industry, 2021, 50(1): 110-112.
|
| [2] |
李闰华, 高丽, 张虎清, 等. 润滑油精制废白土再生及资源化利用[J]. 山东化工, 2020, 49(18): 242-243.
|
|
LI Runhua, GAO Li, ZHANG Huqing, et al. Regeneration and resource utilization of waste clay from lubricant oil refining process[J]. Shandong Chemical Industry, 2020, 49(18): 242-243.
|
| [3] |
孙浩程, 回军, 孙志强, 等. 润滑油精制废白土处理工艺的研究进展[J]. 现代化工, 2018, 38(10): 58-61.
|
|
SUN Haocheng, HUI Jun, SUN Zhiqiang, et al. Research progress in treatment of waste bleaching clay from lubricant oil refining process[J]. Modern Chemical Industry, 2018, 38(10): 58-61.
|
| [4] |
ZUBAIDI Isam AL, TAMIMI Adil AL, Mustafa AL-ZUBAIDI. Applications of de-oiling and reactivation of spent clay[J]. Environmental Technology & Innovation, 2021, 21: 101182.
|
| [5] |
YUAN Chuan, LIU Qian, LI Peijun, et al. Biofuel characteristic of waste clay oil pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2021, 156: 105117.
|
| [6] |
李晋, 谢萍, 陈平, 等. 废白土热解残渣强化炼化剩余污泥水热液厌氧产能[J]. 工业水处理, 2022, 42(12): 65-71.
|
|
LI Jin, XIE Ping, CHEN Ping, et al. Enhancement of anaerobic digestion of refinery excess sludge hydrothermal liquid by pyrolytic residue of spent bleaching earth[J]. Industrial Water Treatment, 2022, 42(12): 65-71.
|
| [7] |
YU Hongdi, LIN Fawei, GUO Xuan, et al. Co-pyrolysis of saw dust and oily sludge with waste-heat utilization of steel slag on rotary kiln simulated engineering practice[J]. Fuel, 2024, 364: 131012.
|
| [8] |
LI Kai, CAI Ao, TANG Yijun, et al. Heat and mass transfer characteristics of oily sludge thermal desorption[J]. Processes, 2024, 12(1): 227.
|
| [9] |
SONG Siduo, LIU Xuedong, JIANG Xiao, et al. Kinetic analysis of slow pyrolysis of oily sludge at medium temperature (350℃—650℃) and the effects of heating rate on pyrolysis[J]. Environmental Technology, 2024, 45(23): 4900-4913.
|
| [10] |
LIU Chenglong, FAN Dekai, LIU Yang, et al. Production of aromatic-rich oil from marine oily sludge via in situ catalytic pyrolysis using coal gangue[J]. Fuel, 2024, 369: 131699.
|
| [11] |
万震, 王绍庆, 李志合, 等. 废白土热解制备烃类化合物的热解行为分析[J]. 可再生能源, 2023, 41(12): 1563-1570.
|
|
WAN Zhen, WANG Shaoqing, LI Zhihe, et al. Analysis on pyrolysis behavior of hydrocarbon compounds prepared by pyrolysis of spent bleaching clay[J]. Renewable Energy Resources, 2023, 41(12): 1563-1570.
|
| [12] |
WANG Shuang, YUAN Chuan, ESAKKIMUTHU Sivakumar, et al. Catalytic pyrolysis of waste clay oil to produce high quality biofuel[J]. Journal of Analytical and Applied Pyrolysis, 2019, 141: 104633.
|
| [13] |
王文杰, 王万福, 屈一新, 等. 润滑油废白土的热解处理[J]. 环境工程学报, 2012, 6(6): 2067-2071.
|
|
WANG Wenjie, WANG Wanfu, QU Yixin, et al. Pyrolysis treatment of waste clay from lubricating oil production[J]. Chinese Journal of Environmental Engineering, 2012, 6(6): 2067-2071.
|
| [14] |
万震. 木质素与废白土定向催化热解制备芳烃的反应机理研究[D]. 淄博: 山东理工大学, 2023.
|
|
WAN Zhen. Study on reaction mechanism of lignin and spent bleaching clay for preparation of aromatic hydrocarbons by directional catalytic pyrolysis[D]. Zibo: Shandong University of Technology, 2023.
|
| [15] |
全翠, 高宁博, 张广涛, 等. 含油污泥热解残渣制备渗水砖的重金属和多环芳烃浸出特性[J]. 化工进展, 2024, 43(9): 5226-5233.
|
|
QUAN Cui, GAO Ningbo, ZHANG Guangtao, et al. Leaching characteristics of heavy metals and polycyclic aromatic hydrocarbons from permeable bricks prepared by pyrolysis residue of oily sludge[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5226-5233.
|
| [16] |
LIU Yucheng, WANG Ziming, CHEN Mingyan, et al. Preparation of sintered brick from thermal desorption residue of oily sludge and analysis of environmental performance[J]. Construction and Building Materials, 2023, 376: 130923.
|
| [17] |
王茂仁, 贾悦, 李慧敏, 等. 油基岩屑热脱附工程实验能耗分析与优化[J]. 油气田环境保护, 2022, 32(4): 37-43.
|
|
WANG Maoren, JIA Yue, LI Huimin, et al. Energy consumption analysis and optimization of thermal desorption engineering experiment for oil drilling cuttings[J]. Environmental Protection of Oil & Gas Fields, 2022, 32(4): 37-43.
|
| [18] |
CHOI Byeongwook, LEE Sungjong, Eun Hea JHO. Removal of TPH, UCM, PAHs, and Alk-PAHs in oil-contaminated soil by thermal desorption[J]. Applied Biological Chemistry, 2020, 63(1): 83.
|
| [19] |
刘宇程, 王茂仁, 李永刚, 等. 油基岩屑热脱附处理工艺参数优化[J]. 环境工程学报, 2020, 14(6): 1639-1648.
|
|
LIU Yucheng, WANG Maoren, LI Yonggang, et al. Parameters optimization of thermal desorption process treating oil-based cuttings[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1639-1648.
|
| [20] |
LIU Yucheng, WANG Ziming, CHEN Mingyan, et al. Potential of thermal desorption residue of oil-based drilling cuttings for use in subgrade materials[J]. Journal of Environmental Engineering, 2023, 149(10), 04023061.
|
| [21] |
王海峰, 何社云, 王军, 等. 页岩气勘探开发钻井固废特性鉴别研究[J]. 油气田环境保护, 2021, 31(2): 15-20.
|
|
WANG Haifeng, HE Sheyun, WANG Jun, et al. Research on identification of solid waste from shale gas exploration and development drilling[J]. Environmental Protection of Oil & Gas Fields, 2021, 31(2): 15-20.
|
| [22] |
郑发, 李浩文, 林法伟, 等. 大庆罐底油泥热解特性及污染物释放特性[J]. 化工进展, 2022, 41(1): 476-484.
|
|
ZHENG Fa, LI Haowen, LIN Fawei, et al. Pyrolysis characteristics and pollutant release characteristics of Daqing oil sludge[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 476-484.
|
| [23] |
李恒. 涡流和旋转流场中颗粒聚集特性研究[D]. 杭州: 浙江大学, 2020.
|
|
LI Heng. Study of particle accumulation behavior in vortex and rotating flows[D]. Hangzhou: Zhejiang University, 2020.
|
| [24] |
崔元凯, 张欢. 颗粒间碰撞对槽道湍流中颗粒聚集效应的影响研究[J]. 力学学报, 2024, 56(2): 365-376.
|
|
CUI Yuankai, ZHANG Huan. Study of the effects of inter-particle collisions on particle accumulation in turbulent channel flows[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(2): 365-376.
|
| [25] |
QUAN Cui, ZHANG Guangtao, GAO Ningbo, et al. Behavior study of migration and transformation of heavy metals during oily sludge pyrolysis[J]. Energy & Fuels, 2022, 36(15): 8311-8322.
|
| [26] |
ZHANG Ge, YANG Huifen, ZHAO Tong, et al. Highly efficient removal of As(Ⅲ), Zn(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) in aqueous solution using thermal desorption residue from oil sludge contaminated soil: Performance and mechanism[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107668.
|
| [27] |
徐建林, 淡小敏, 文琛, 等. 纳米锑颗粒粒径对润滑油摩擦性能的影响[J]. 稀有金属材料与工程, 2018, 47(1): 333-338.
|
|
XU Jianlin, DAN Xiaomin, WEN Chen, et al. Effect of particle size of antimony nanoparticles on tribological properties of lubricant oil[J]. Rare Metal Materials and Engineering, 2018, 47(1): 333-338.
|
| [28] |
王红娟, 蒋国斌, 赵靓, 等. 油基岩屑热脱附残渣危险特性与利用潜力分析[J]. 能源与环保, 2023, 45(8): 177-183.
|
|
WANG Hongjuan, JIANG Guobin, ZHAO Liang, et al. Hazard characteristics and utilization potential analysis of thermal desorption residues from oil-based cuttings[J]. China Energy and Environmental Protection, 2023, 45(8): 177-183.
|
| [29] |
李伟栋. 含油污泥热解残渣生态风险评价及资源化利用[D]. 西安: 西安工业大学, 2023.
|
|
LI Weidong. Ecological risk assessment and resource utilization of pyrolysis residue of oily sludge[D]. Xi’an: Xi’an Technological University, 2023.
|
| [30] |
荆涛. 硫化碱渣的固体废物属性鉴别及其腐蚀性变化规律研究[D]. 兰州: 兰州交通大学, 2020.
|
|
JING Tao. Study on the property identification of solid waste and the change rule of its corrosiveness [D]. Lanzhou: Lanzhou Jiaotong University, 2020.
|