化工进展 ›› 2025, Vol. 44 ›› Issue (11): 6258-6269.DOI: 10.16085/j.issn.1000-6613.2024-1542
• 能源加工与技术 • 上一篇
李思敏1,2(
), 江荣源1,2, 陈志强3, 袁春雯2, 王贵龙1, 陈俊涛1, 卢贝丽1, 黄彪1, 林冠烽1,2(
)
收稿日期:2024-09-23
修回日期:2024-11-06
出版日期:2025-11-25
发布日期:2025-12-08
通讯作者:
林冠烽
作者简介:李思敏(2000—),女,硕士研究生,研究方向为生物质能源与碳材料。E-mail:2955775617@qq.com。
基金资助:
LI Simin1,2(
), JIANG Rongyuan1,2, CHEN Zhiqiang3, YUAN Chunwen2, WANG Guilong1, CHEN Juntao1, LU Beili1, HUANG Biao1, LIN Guanfeng1,2(
)
Received:2024-09-23
Revised:2024-11-06
Online:2025-11-25
Published:2025-12-08
Contact:
LIN Guanfeng
摘要:
生物质基碳材料因其在储能领域的潜力受到了广泛关注。然而,纯碳基材料通常亲水性差、赝电容低;组装成电极时需要使用黏结剂,限制了其在高能量密度超级电容器上的应用。基于此,本研究以植酸为造孔剂和磷源,制备出自支撑磷掺杂厚碳电极(P-WC),并将其应用于超级电容器中。植酸的造孔和掺杂作用赋予P-WC三维多孔结构和超亲水性,这促进了电解液快速渗透和交换,显著提升其电化学性能。组装成对称超级电容器(SSC)时,在1mA/cm2下,P-WC的面积比电容和质量比电容分别高达6520mF/cm2和198F/g;在能量密度为39.54W·h/kg(1.31mW·h/cm2)时,功率密度达到21.82W/kg(0.7mW/cm2);即使在20mA/cm2的高电流密度下,能量密度为24.12W·h/kg(0.80mW·h/cm2)时,SSC仍能维持436.36W/kg(14400mW/cm2)的功率密度。因此,本项工作可为高性能自支撑超级电容器的构建和应用提供理论支撑。
中图分类号:
李思敏, 江荣源, 陈志强, 袁春雯, 王贵龙, 陈俊涛, 卢贝丽, 黄彪, 林冠烽. 自支撑掺磷厚碳电极的构建及其在超级电容器中的应用[J]. 化工进展, 2025, 44(11): 6258-6269.
LI Simin, JIANG Rongyuan, CHEN Zhiqiang, YUAN Chunwen, WANG Guilong, CHEN Juntao, LU Beili, HUANG Biao, LIN Guanfeng. Construction of self-supported phosphorus-doped thick carbon electrode and its application to supercapacitors[J]. Chemical Industry and Engineering Progress, 2025, 44(11): 6258-6269.
| 样品 | SBET①/m2·g-1 | Vt②/cm3·g-1 | Vmic③/cm3·g-1 | Vmes/cm3·g-1 | 平均孔径/nm |
|---|---|---|---|---|---|
| WC-0 | 468 | 0.2099 | 0.1564 | 0.0378 | 3.44 |
| P-WC-1.0 | 1565 | 0.7759 | 0.2979 | 0.3129 | 2.42 |
表1 WC-0和P-WC-1.0的孔结构参数
| 样品 | SBET①/m2·g-1 | Vt②/cm3·g-1 | Vmic③/cm3·g-1 | Vmes/cm3·g-1 | 平均孔径/nm |
|---|---|---|---|---|---|
| WC-0 | 468 | 0.2099 | 0.1564 | 0.0378 | 3.44 |
| P-WC-1.0 | 1565 | 0.7759 | 0.2979 | 0.3129 | 2.42 |
| 元素 | WC-0 | P-WC-0.1 | P-WC-0.5 | P-WC-1.0 | P-WC-2.0 |
|---|---|---|---|---|---|
| C | 92.2 | 87.06 | 83.59 | 75.76 | 69.74 |
| O | 7.7 | 11.98 | 13.35 | 17.66 | 20.55 |
| P | 0.1 | 0.96 | 3.06 | 6.58 | 9.71 |
表2 不同样品的C、O和P元素含量(原子分数,%)
| 元素 | WC-0 | P-WC-0.1 | P-WC-0.5 | P-WC-1.0 | P-WC-2.0 |
|---|---|---|---|---|---|
| C | 92.2 | 87.06 | 83.59 | 75.76 | 69.74 |
| O | 7.7 | 11.98 | 13.35 | 17.66 | 20.55 |
| P | 0.1 | 0.96 | 3.06 | 6.58 | 9.71 |
| 材料 | 比电容 | 电流密度 | 电容保持率(循环圈数) | 文献 |
|---|---|---|---|---|
| NWDC | 1.06F/cm2 | 1A/g | 93.2%(7500) | [ |
| NiCo2O4/CF | 70.70F/g | 10A/g | 87.2%(5000) | [ |
| Bio-AC | 100F/g | 0.1A/g | 86.0%(10000) | [ |
| CPC650-1-3 | 258F/g | 0.5A/g | 90.1%(10000) | [ |
| CW-P-9.24 | 6.59F/cm2 | 1mA/cm2 | 96.5%(10000) | [ |
| P-WC-1.0 | 10.46F/cm2 | 1mA/cm2 | 108.0%(10000) | 本文 |
表3 三电极系统中不同木基碳电极的电化学性能
| 材料 | 比电容 | 电流密度 | 电容保持率(循环圈数) | 文献 |
|---|---|---|---|---|
| NWDC | 1.06F/cm2 | 1A/g | 93.2%(7500) | [ |
| NiCo2O4/CF | 70.70F/g | 10A/g | 87.2%(5000) | [ |
| Bio-AC | 100F/g | 0.1A/g | 86.0%(10000) | [ |
| CPC650-1-3 | 258F/g | 0.5A/g | 90.1%(10000) | [ |
| CW-P-9.24 | 6.59F/cm2 | 1mA/cm2 | 96.5%(10000) | [ |
| P-WC-1.0 | 10.46F/cm2 | 1mA/cm2 | 108.0%(10000) | 本文 |
图9 SSC简图和应用图(a);不同碳基电极(b)(1—CNT@CW800//CNT@CW800[55];2—TDWP-3//TDWP-3[49];3—CW-P-9.24// CW-P-9.24[49];4—ZnCW-1000//ZnCW-1000)[56];特定电流密度下的循环保持率比较(c)(1—ZnCW-1000//CW[56];2—HWC-3// HWC-3[56];3—SPWC//SPWC[55];4—ZnCW-1000//ZnCW-1000[56];5—NiS2-CW//CW[47];6—GRTW-3//GRTW-3[24];7—CNT@CW800//CNT@CW800[55];8—CW-P-9.24//CW-P-9.24[49])
| [1] | WANG Feng, LEE Jiyong, CHEN Lian, et al. Inspired by wood: Thick electrodes for supercapacitors[J]. ACS Nano, 2023, 17(10): 8866-8898. |
| [2] | ZHONG Mingzhu, ZHANG Miao, LI Xifei. Carbon nanomaterials and their composites for supercapacitors[J]. Carbon Energy, 2022, 4(5): 950-985. |
| [3] | LIU Ling, Weibang LYU, WANG Hongyu. Synergetic surface coating and S-rich vacancy reconstruction NiCo2S4 electrode materials for high cycle stability asymmetric supercapacitor applications[J]. Journal of Energy Storage, 2023, 73: 109062. |
| [4] | LIU Hao, WANG Min, ZHAI Duoduo, et al. Design and theoretical study of carbon-based supercapacitors especially exhibiting superior rate capability by the synergistic effect of nitrogen and phosphor dopants[J]. Carbon, 2019, 155: 223-232. |
| [5] | ZHANG Yong, ZHOU Chenggang, YAN Xinhua, et al. Recent advances and perspectives on graphene-based gels for superior flexible all-solid-state supercapacitors[J]. Journal of Power Sources, 2023, 565: 232916. |
| [6] | SHIN Seung-Jae, GITTINS Jamie W, BALHATCHET Chloe J, et al. Metal-organic framework supercapacitors: Challenges and opportunities[J]. Advanced Functional Materials, 2024, 34(43): 2308497. |
| [7] | 陈星, 蒋德敏, 谢昆, 等. 过渡金属化合物表界面调控对超级电容的增强机制[J]. 化学进展, 2024, 36(7): 961-974. |
| CHEN Xing, JIANG Demin, XIE Kun, et al. Enhanced mechanism of supercapacitance by regulating the surface interface of transition metal compounds[J]. Progress in Chemistry, 2024, 36(7): 961-974. | |
| [8] | 赛亚尔·斯迪克, 伊尔夏提·地里夏提. 功能高分子/碳纳米管复合材料的应用进展[J]. 化工新型材料, 2023, 51(6): 8-12. |
| SAIYAER Sidike, YIERXIATI Dilixiati. Application progress of functional polymer/carbon nanotube composites[J]. New Chemical Materials, 2023, 51(6): 8-12, 17. | |
| [9] | 刘雨璇, 轩迪攀, 李佳佳, 等. 石墨烯改性椰壳活性炭复合材料的制备及其电化学性能研究[J]. 林产化学与工业, 2020, 40(1): 61-67. |
| LIU Yuxuan, XUAN Dipan, LI Jiajia, et al. Preparation of graphene modified coconut shell activated carbon composite and its electrochemical performance[J]. Chemistry and Industry of Forest Products, 2020, 40(1): 61-67. | |
| [10] | LUO Lu, LAN Yuling, ZHANG Qianqian, et al. A review on biomass-derived activated carbon as electrode materials for energy storage supercapacitors[J]. Journal of Energy Storage, 2022, 55: 105839. |
| [11] | 高晨祥, 张珂, 刘春媛, 等. 木材在电化学中的应用研究进展[J]. 化工进展, 2021, 40(S2): 203-210. |
| GAO Chenxiang, ZHANG Ke, LIU Chunyuan, et al. Research progress on the application of wood in electrochemistry[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 203-210. | |
| [12] | YAN Bing, FENG Li, ZHENG Jiaojiao, et al. High performance supercapacitors based on wood-derived thick carbon electrodes synthesized green activation process[J]. Inorganic Chemistry Frontiers, 2022, 9(23): 6108-6123. |
| [13] | TAVAKOLIAN Mandana, JAFARI Seid Mahdi, VAN DE VEN Theo G M. A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials[J]. Nano-Micro Letters, 2020, 12(1): 73. |
| [14] | TAN Xiaoxin, FENG Zhiwei, YANG Wei, et al. Flower-like heterogeneous phosphorus-doped Co3S4@Ni3S4 nanoparticles as a binder-free electrode for asymmetric all-solid- state supercapacitors[J]. ACS Applied Energy Materials, 2023, 6(2): 702-713. |
| [15] | 钟存贵, 于俊丽, 谢留雨, 等. 高性能镍钴磷化物的制备及其在超级电容器中的应用[J]. 材料工程, 2024, 52(7): 225-233. |
| ZHONG Cungui, YU Junli, XIE Liuyu, et al. Preparation of high-performance nickel cobalt phosphide and its application in supercapacitors[J]. Journal of Materials Engineering, 2024, 52(7): 225-233. | |
| [16] | XIONG Chuanyin, WANG Tianxu, ZHANG Yongkang, et al. Li-Na metal compounds inserted into porous natural wood as a bifunctional hybrid applied in supercapacitors and electrocatalysis[J]. International Journal of Hydrogen Energy, 2022, 47(4): 2389-2398. |
| [17] | WANG Feng, CHEN Lian, HE Shuijian, et al. Design of wood-derived anisotropic structural carbon electrode for high-performance supercapacitor[J]. Wood Science and Technology, 2022, 56(4): 1191-1203. |
| [18] | SHAN Lin, ZHANG Yu, XU Ying, et al. Wood-based hierarchical porous nitrogen-doped carbon/manganese dioxide composite electrode materials for high-rate supercapacitor[J]. Advanced Composites and Hybrid Materials, 2023, 6(5): 174. |
| [19] | ZHANG Xinyu, JIANG Changzhong, LIANG Jing, et al. Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage[J]. Journal of Materials Chemistry A, 2021, 9(13): 8099-8128. |
| [20] | YANG Lin, TAKKALLAPALLY Chethan, GABHI Randeep S, et al. Wood biochar monolith-based approach to increasing the volumetric energy density of supercapacitor[J]. Industrial & Engineering Chemistry Research, 2022, 61(23): 7891-7901. |
| [21] | ZHANG Hongming, XUE Junying, WANG Shen, et al. Fabrication of high density and nitrogen-doped porous carbon for high volumetric performance supercapacitors[J]. Journal of Energy Storage, 2022, 47: 103657. |
| [22] | SHAO Yutian, GUAN Qing, DING Chunyan, et al. Porous carbon derived from K2B4O7 and phytic acid-modified cellulose for supercapacitors[J]. Ionics, 2022, 28(5): 2397-2402. |
| [23] | YANG Qingyin, HUANG Juan, TU Jinying, et al. A micropore-dominant N,P,S-codoped porous carbon originating from hydrogel for high-performance supercapacitors mediated by phytic acid[J]. Microporous and Mesoporous Materials, 2021, 316: 110951. |
| [24] | CAO Chenhao, HU Huamin, DUAN Junfei, et al. Phytic acid mediated N,P co-doped hierarchical porous carbon with boosting capacitive storage for dual carbon lithium-ion capacitor[J]. Electrochimica Acta, 2023, 470: 143310. |
| [25] | YANG Zhewei, GAO Yuan, ZHAO Zhenxin, et al. Phytic acid assisted formation of P-doped hard carbon anode with enhanced capacity and rate capability for lithium ion capacitors[J]. Journal of Power Sources, 2020, 474: 228500. |
| [26] | WANG Feng, CHEONG JunYoung, HE Qiu, et al. Phosphorus-doped thick carbon electrode for high-energy density and long-life supercapacitors[J]. Chemical Engineering Journal, 2021, 414: 128767. |
| [27] | CHODANKAR Nilesh R, SHINDE Pragati A, PATIL Swati J, et al. Solution-free self-assembled growth of ordered tricopper phosphide for efficient and stable hybrid supercapacitor[J]. Energy Storage Materials, 2021, 39: 194-202. |
| [28] | 王成毓, 杨照林, 王鑫, 等. 木材功能化研究新进展[J]. 林业工程学报, 2019, 4(3): 10-18. |
| WANG Chengyu, YANG Zhaolin, WANG Xin, et al. New research progress of functional wood[J]. Journal of Forestry Engineering, 2019, 4(3): 10-18. | |
| [29] | SUN Yangkai, XU Dan, WANG Shurong. Self-assembly of biomass derivatives into multiple heteroatom-doped 3D-interconnected porous carbon for advanced supercapacitors[J]. Carbon, 2022, 199: 258-267. |
| [30] | 熊永志, 刘艳艳, 陈晓荭, 等. 甘蔗渣基磷掺杂活性炭的制备及其电化学性能[J]. 化工进展, 2022, 41(8): 4397-4405. |
| XIONG Yongzhi, LIU Yanyan, CHEN Xiaohong, et al. Preparation and electrochemical performance of bagasse-based phosphorus-doped activated carbon[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4397-4405. | |
| [31] | CHEN Yashi, YIN Zhuo, HUANG Danlian, et al. Uniform polypyrrole electrodeposition triggered by phytic acid-guided interface engineering for high energy density flexible supercapacitor[J]. Journal of Colloid and Interface Science, 2022, 611: 356-365. |
| [32] | ZHOU Xin, WANG Penglei, ZHANG Yagang, et al. From waste cotton linter: A renewable environment-friendly biomass based carbon fibers preparation[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(10): 5585-5593. |
| [33] | NIROSHA Bose, SELVAKUMAR Rajendran, JEYANTHI Jeyadharmarahan, et al. Elaeocarpus tectorius derived phosphorus-doped carbon as an electrode material for an asymmetric supercapacitor[J]. New Journal of Chemistry, 2020, 44(1): 181-193. |
| [34] | 杨中志, 王傲, 马名哲, 等. 木质素基高比表面积活性炭的制备及其电化学性能研究[J]. 林产化学与工业, 2024, 44(3): 37-44. |
| YANG Zhongzhi, WANG Ao, MA Mingzhe, et al. Preparation and electrochemical performance of lignin-based high specific surface area activated carbon[J]. Chemistry and Industry of Forest Products, 2024, 44(3): 37-44. | |
| [35] | TIAN Wenhua, REN Penggang, HOU Xin, et al. Construction of N-doped mesoporous carbon via micelle-induced chitosan for enhancing capacitive storage[J]. Journal of Energy Storage, 2023, 73: 109129. |
| [36] | WANG Xin, WANG Xinyi, ZHOU Xiaofeng, et al. Self-templating synthesis of porous carbon with phytate salts for supercapacitor application[J]. Journal of Energy Storage, 2023, 57: 106221. |
| [37] | LIU Yu, ZHENG Rong, LIN Huachen, et al. A novel P-doped Ni0.5Cu0.5Co2O4 sphere with a yolk-shell hollow structure for high-energy-density supercapacitor[J]. Materials Letters, 2023: 134682. |
| [38] | CHEN Jizhang, XU Junling, ZHOU Shuang, et al. Nitrogen-doped hierarchically porous carbon foam: A free-standing electrode and mechanical support for high-performance supercapacitors[J]. Nano Energy, 2016, 25: 193-202. |
| [39] | HAN Xinyi, MENG Xiaodong, CHEN Shang, et al. P-doping a porous carbon host promotes the lithium storage performance of red phosphorus[J]. ACS Applied Materials & Interfaces, 2023, 15(9): 11713-11722. |
| [40] | 王晓亮, 于振秋, 常雷明, 等. 电沉积法制备氢氧化物/氧化物超级电容器电极的研究进展[J]. 化工进展, 2023, 42(10): 5272-5285. |
| WANG Xiaoliang, YU Zhenqiu, CHANG Leiming, et al. Research progress in the preparation of hydroxide/oxide supercapacitor electrodes by electrodeposition[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5272-5285. | |
| [41] | MENG Qi, GE Huilin, YAO Weitang, et al. One-step synthesis of nitrogen-doped wood derived carbons as advanced electrodes for supercapacitor applications[J]. New Journal of Chemistry, 2019, 43(9): 3649-3652. |
| [42] | WU Sutang, ZHU Yihan, YAN Xuehua, et al. Dense NiCo2O4 nanoneedles grown on carbon foam showing excellent electrochemical and microwave absorption properties[J]. Chemistry—A European Journal, 2023, 29(69): 2302680. |
| [43] | SATHYAMOORTHI Sethuraman, PHATTHARASUPAKUN Nutthaphon, SAWANGPHRUK Montree. Environmentally benign non-fluoro deep eutectic solvent and free-standing rice husk-derived bio-carbon based high-temperature supercapacitors[J]. Electrochimica Acta, 2018, 286: 148-157. |
| [44] | ZHANG Yan, ZHAO Yunpeng, QIU Lele, et al. Insights into the KOH activation parameters in the preparation of corncob-based microporous carbon for high-performance supercapacitors[J]. Diamond and Related Materials, 2022, 129: 109331. |
| [45] | VIGNESH G, RAJESH G, SUDHAHAR S, et al. Influence of annealing on the morphological, structural and electrochemical properties of Co3O4 spinel electrodes[J]. Journal of Energy Storage, 2023, 73: 109115. |
| [46] | YANG Xuan, WANG Xueqin, YU Xuewen, et al. NiCo2S4 nanosphere anchored on N,S co-doped activated carbon for high-performance asymmetric supercapacitors[J]. Industrial Crops and Products, 2024, 222: 119813. |
| [47] | CHEN Chaoji, KUANG Yudi, ZHU Shuze, et al. Structure-property-function relationships of natural and engineered wood[J]. Nature Reviews Materials, 2020, 5: 642-666. |
| [48] | SU Die, YANG Jianping, HONG Qingshuai, et al. A novel high pseudo-capacitive contribution anode in K-ion battery: Porous TiNbO4/C nanofibers[J]. Journal of Power Sources, 2022, 541: 231635. |
| [49] | BI Zhihong, HUO Li, KONG Qingqiang, et al. Structural evolution of phosphorus species on graphene with a stabilized electrochemical interface[J]. ACS Applied Materials & Interfaces, 2019, 11(12): 11421-11430. |
| [50] | 张燕, 王淼, 赵佳辉, 等. 氮掺杂石墨烯/碳纳米管/无定形炭复合材料制备及其电化学性能[J]. 化工进展, 2022, 41(10): 5501-5509. |
| ZHANG Yan, WANG Miao, ZHAO Jiahui, et al. Preparation and electrochemical properties of nitrogen-doped graphene/carbon nanotubes/amorphous carbon composites[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5501-5509. | |
| [51] | LI Bing, PANG Huan, XUE Huaiguo. Fe-based phosphate nanostructures for supercapacitors[J]. Chinese Chemical Letters, 2021, 32(2): 885-889. |
| [52] | DONG Xiaomei, JIN Huile, WANG Rongyue, et al. High volumetric capacitance, ultralong life supercapacitors enabled by waxberry-derived hierarchical porous carbon materials[J]. Advanced Energy Materials, 2018, 8(11): 1702695. |
| [53] | YUE Liguo, CHEN Li, WANG Xinying, et al. Ni/Co-MOF@aminated MXene hierarchical electrodes for high-stability supercapacitors[J]. Chemical Engineering Journal, 2023, 451: 138687. |
| [54] | ZHENG Yufei, CHEN Kongmei, JIANG Kunpeng, et al. Progress of synthetic strategies and properties of heteroatoms-doped (N,P,S,O) carbon materials for supercapacitors[J]. Journal of Energy Storage, 2022, 56: 105995. |
| [55] | CAO Jiaming, LIN Lin, ZHANG Jian, et al. Biological treatment as a green approach for enhancing electrochemical performance of wood derived carbon based supercapacitor electrodes[J]. Journal of Cleaner Production, 2023, 422: 138659. |
| [56] | BAASANJAV Erdenebayar, BANDYOPADHYAY Parthasarathi, SAEED Ghuzanfar, et al. Dual-ligand modulation approach for improving supercapacitive performance of hierarchical zinc-nickel-iron phosphide nanosheet-based electrode[J]. Journal of Industrial and Engineering Chemistry, 2021, 99: 299-308. |
| [1] | 胡亮, 张开悦, 高波, 张志彬, 刘状, 付海洋, 唐一巧, 杨媛媛. 石墨烯及其功能化石墨烯材料在储能领域中的应用[J]. 化工进展, 2025, 44(9): 5055-5074. |
| [2] | 江荣源, 李思敏, 陈志强, 王贵龙, 陈俊涛, 林冠烽, 卢贝丽, 黄彪, 陈燕丹. 磷掺杂硬碳/MnO x 复合材料的制备及其电化学性能[J]. 化工进展, 2025, 44(7): 4039-4049. |
| [3] | 李净珊, 徐洋洋, 叶仪鹏, 董梦娇, 李秉芯, 陈昊天. 两步溶剂热法构筑NCNF/NiCo-LDH/NiCo-LDH复合电极用于超级电容器[J]. 化工进展, 2025, 44(1): 379-387. |
| [4] | 郭长滨, 李蒙蒙, 冯梦晗, 原田, 张克强, 罗艳丽, 王风. 铈掺杂镧基钙钛矿制备及对水体磷酸盐和植酸的吸附性能[J]. 化工进展, 2024, 43(8): 4748-4756. |
| [5] | 杨光, 姜瑞婷, 张玥, 符子剑, 刘伟. 五氧化二钒/碳纳米复合材料在超级电容器中的应用[J]. 化工进展, 2024, 43(7): 3857-3871. |
| [6] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
| [7] | 朱薇, 齐鹏刚, 苏银海, 张书平, 熊源泉. 生物油分级多孔碳超级电容器电极材料的制备及性能[J]. 化工进展, 2023, 42(6): 3077-3086. |
| [8] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
| [9] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
| [10] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
| [11] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
| [12] | 杜保宁, 赵珊, 刘向卿, 张毅, 肖雅茹, 张少飞, 李田田, 孙金峰. 纳米多孔CuMn基氧化物电极的制备及性能[J]. 化工进展, 2023, 42(3): 1484-1492. |
| [13] | 卓祖优, 宋生南, 黄明堦, 杨旋, 卢贝丽, 陈燕丹. 草酸钾-尿素协同活化法制备超大比表面积面粉基多级孔炭及其电化学储能应用[J]. 化工进展, 2023, 42(2): 925-933. |
| [14] | 田甜, 雷西萍, 于婷, 樊凯, 宋晓琪, 朱航. 碳材料在柔性超级电容器中的研究进展[J]. 化工进展, 2023, 42(2): 884-896. |
| [15] | 肖巍, 鲜小彬, 梁果, 杨欣雨, 张艳华. 紫菜衍生的氮掺杂分级多孔炭制备及其超级电容性能[J]. 化工进展, 2023, 42(11): 5871-5881. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |