化工进展 ›› 2025, Vol. 44 ›› Issue (10): 5532-5546.DOI: 10.16085/j.issn.1000-6613.2024-1454
• 化工过程与装备 • 上一篇
李斌玉1,2,3(
), 赵有璟1,2, 王敏1,2(
), 杨红军1,2(
)
收稿日期:2024-09-04
修回日期:2024-11-19
出版日期:2025-10-25
发布日期:2025-11-10
通讯作者:
王敏,杨红军
作者简介:李斌玉(2000—),女,硕士研究生,研究方向为膜分离。E-mail:libinyu22@mails.ucas.ac.cn。
基金资助:
LI Binyu1,2,3(
), ZHAO Youjing1,2, WANG Min1,2(
), YANG Hongjun1,2(
)
Received:2024-09-04
Revised:2024-11-19
Online:2025-10-25
Published:2025-11-10
Contact:
WANG Min, YANG Hongjun
摘要:
电渗析作为绿色分离技术,广泛应用于水处理和战略元素提取领域。离子交换膜作为电渗析装置的核心,同时控制离子传输及选择性分离过程,然而膜污染限制了离子交换膜的离子交换能力、选择性分离性能及稳定性,进而导致膜寿命衰减、工艺成本增加等问题,成为制约电渗析广泛应用的关键因素。本文系统梳理了离子交换膜污染的成因、主要类型及污染机制以及相应的控制策略等方面的前沿性研究进展,重点讨论了无机结垢、有机物与胶体的吸附污染、生物附着污染等污染机理,并从强化离子传质及抑制污染物与膜界面的非特异性和特异性相互作用的角度出发,阐述了优化操作参数、膜表面材料改性、增加预处理等膜污染控制策略,以期为构建智能化膜污染监测及防控系统提供理论指导。
中图分类号:
李斌玉, 赵有璟, 王敏, 杨红军. 电渗析离子交换膜污染机理及控制策略[J]. 化工进展, 2025, 44(10): 5532-5546.
LI Binyu, ZHAO Youjing, WANG Min, YANG Hongjun. Ion exchange membrane fouling mechanisms and control strategies in electrodialysis[J]. Chemical Industry and Engineering Progress, 2025, 44(10): 5532-5546.
| 污染类型 | 清洗目标 | 清洗方法及试剂 | 清洗机理 |
|---|---|---|---|
| 颗粒状污染物 | 泥沙、预处理残留物等 | 物理清洗包括水力、机械刮除、曝气、超声波、电泳、气-液脉冲清洗等 | 水/空气的机械力作用 |
| 有机污染物 | 蛋白质、多糖、油脂等 | 碱包括氢氧化钠、乙醇等;氧化清洗剂;酶类清洗剂;表面活性剂等 | 与有机物发生反应,有机物被氧化或降解 |
| 无机污染物 | 碳酸盐、硫酸盐、氢氧化镁、硅等结垢物 | 无机酸包括盐酸、硝酸、硫酸等;螯合剂等 | 通过酸解或络合作用改变无机污染物的溶解度 |
| 生物污染物 | 病菌、病毒、藻类等 | 杀菌剂、除藻剂、无机碱、有机碱等 | 损害细胞膜并干扰细胞的新陈代谢 |
表1 离子交换膜清洗策略及机理[52,103-104,106-107]
| 污染类型 | 清洗目标 | 清洗方法及试剂 | 清洗机理 |
|---|---|---|---|
| 颗粒状污染物 | 泥沙、预处理残留物等 | 物理清洗包括水力、机械刮除、曝气、超声波、电泳、气-液脉冲清洗等 | 水/空气的机械力作用 |
| 有机污染物 | 蛋白质、多糖、油脂等 | 碱包括氢氧化钠、乙醇等;氧化清洗剂;酶类清洗剂;表面活性剂等 | 与有机物发生反应,有机物被氧化或降解 |
| 无机污染物 | 碳酸盐、硫酸盐、氢氧化镁、硅等结垢物 | 无机酸包括盐酸、硝酸、硫酸等;螯合剂等 | 通过酸解或络合作用改变无机污染物的溶解度 |
| 生物污染物 | 病菌、病毒、藻类等 | 杀菌剂、除藻剂、无机碱、有机碱等 | 损害细胞膜并干扰细胞的新陈代谢 |
| [1] | ALIASKARI Mehran, SCHÄFER Andrea I. Nitrate, arsenic and fluoride removal by electrodialysis from brackish groundwater[J]. Water Research, 2021, 190: 116683. |
| [2] | NEZUNGAI Chiedza Demetria, MAJOZI Thokozani. Optimum synthesis of an electrodialysis framework with a background process Ⅱ: Optimization and synthesis of a water network[J]. Chemical Engineering Science, 2016, 147: 189-199. |
| [3] | TADO Kenji, SAKAI Fumika, SANO Yoshihiko, et al. An analysis on ion transport process in electrodialysis desalination[J]. Desalination, 2016, 378: 60-66. |
| [4] | VAN DER BRUGGEN Bart. Ion-exchange membrane systems—Electrodialysis and other electromembrane processes[M]//Fundamental modelling of membrane systems. Amsterdam: Elsevier, 2018: 251-300. |
| [5] | PAUL Arputha M S, ATASI Omer, LAMMERTINK Rob G H, et al. Mismatch and mix: Making use of electrokinetic aspects of spacers for intensified electrodialysis[J]. Desalination, 2024, 577: 117401. |
| [6] | DAMMAK Lasâad, FOUILLOUX Julie, BDIRI Myriam, et al. A review on ion-exchange membrane fouling during the electrodialysis process in the food industry, part 1: Types, effects, characterization methods, fouling mechanisms and interactions[J]. Membranes, 2021, 11(10): 789. |
| [7] | OSTWALD Wilhelm. Elektrische eigenschaften halbdurchlässiger scheidewände[J]. Zeitschrift Für Physikalische Chemie, 1890, 6U(1): 71-82. |
| [8] | DONNAN Frederick George. Theorie der membrangleichgewichte und membranpotentiale bei vorhandensein von nicht dialysierenden elektrolyten. Ein beitrag zur physikalisch-chemischen physiologie[J]. Zeitschrift Für Elektrochemie und Angewandte Physikalische Chemie, 1911, 17(14): 572-581. |
| [9] | MICHAELIS Leonor, FUJITA Akikazu. The electric phenomen and ion permeability of membranes. Ⅱ Permeability of apple peel[J]. Biochem Z, 1925: 15828-15837. |
| [10] | HANS Wassenegger, KARL Jaeger. Process of effecting cation exchange: US2204539[P]. 1940-06-11. |
| [11] | JUDA Walter, MCRAE Wayne A. Coherent ion-exchange gels and membranes[J]. Journal of the American Chemical Society, 1950, 72(2): 1044. |
| [12] | NISHIWAKI Tadashi. Concentration of electrolytes prior to evaporation with an electromembrane process [M]//Mndus-trial Process with Membranes. New York: Wiley Interscience,1972. |
| [13] | 张维润. 电渗析工程学[M]. 北京: 科学出版社, 1995. |
| ZHANG Weirun. Elecrodialysis engineering[M]. Beijing: Science Press, 1995. | |
| [14] | CHLANDA Frederick P, LAN Ming J. Bipolar membranes and method of making same: US4116889[P]. 1978-09-26. |
| [15] | DURSUN Lale, Osman Nuri ATA, KANCA Arzu. Bipolar membrane electrodialysis for binary salt water treatment: Valorization of type and concentration of electrolytes[J]. Industrial & Engineering Chemistry Research, 2021, 60(5): 2003-2010. |
| [16] | AFIFAH Dini Nur, ARIYANTO Teguh, SUPRANTO Supranto, et al. Separation of lithium ion from lithium-cobalt mixture using electrodialysis monovalent selective ion exchange membrane[J]. Engineering Journal, 2018, 22(3): 165-179. |
| [17] | NTHUNYA Lebea N, BOPAPE Mokgadi F, MAHLANGU Oranso T, et al. Fouling, performance and cost analysis of membrane-based water desalination technologies: A critical review[J]. Journal of Environmental Management, 2022, 301: 113922. |
| [18] | HAN Le, GALIER Sylvain, ROUX-DE BALMANN Hélène. Transfer of neutral organic solutes during desalination by electrodialysis: Influence of the salt composition[J]. Journal of Membrane Science, 2016, 511: 207-218. |
| [19] | ZABOLOTSKII Victor I, SHARAFAN M V, SHEL’DESHOV N V. The dissociation rate of water molecules in systems with cation- and anion-exchange membranes[J]. Russian Journal of Electrochemistry, 2012, 48(5): 550-555. |
| [20] | ROHMAN Farhrony Sholahudin, OTHMAN Mothd Roslee, AZIZ Norashid. Modeling of batch electrodialysis for hydrochloric acid recovery[J]. Chemical Engineering Journal, 2010, 162(2): 466-479. |
| [21] | 祝海涛, 杨波, 高从堦. 电渗析过程传质模型的研究进展[J]. 化工进展, 2020, 39(3): 815-823. |
| ZHU Haitao, YANG Bo, GAO Congjie. Research progress on mass transfer models for electrodialysis process[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 815-823. | |
| [22] | WANG Yaoming, WANG Anlei, ZHANG Xu, et al. The concentration, resistance, and potential distribution across a cation exchange membrane in 1∶2 (Na2SO4) type aqueous solution[J]. Desalination, 2012, 284: 106-115. |
| [23] | 刘骆峰, 张雨山, 黄西平, 等. 淡化后浓海水化学资源综合利用技术研究进展[J]. 化工进展, 2013, 32(2): 446-452. |
| LIU Luofeng, ZHANG Yushan, HUANG Xiping, et al. Research progress of multipurpose utilization technologies of brine from seawater desalination plant[J]. Chemical Industry and Engineering Progress, 2013, 32(2): 446-452. | |
| [24] | TOSHIKATS Sata. Ion exchange membranes: Preparation, characterization, modification and application[M]. Gateshead: Athenaeum Press Ltd., 2015. |
| [25] | AL-AMSHAWEE Sajjad Khudhur Abbas, BIN MOHD YUNUS Mohd Yusri. Electrodialysis membrane with concentration polarization—A review[J]. Chemical Engineering Research and Design, 2024, 201: 645-678. |
| [26] | HANSIMA M A C K, MAKEHELWALA Madhubhashini, JINADASA K B S N, et al. Fouling of ion exchange membranes used in the electrodialysis reversal advanced water treatment: A review[J]. Chemosphere, 2021, 263: 127951. |
| [27] | ANDREEVA Marina. Impact of surface properties of cation-exchange membranes on the formation of Ca2+ and Mg2+ containing scales during electrodialysis of their aqueous solutions[D]. Краснодар: Kuban State University, 2017. |
| [28] | KARABELAS Anastasios J, KARANASIOU Anthoula, MITROULI Soultana T. Incipient membrane scaling by calcium sulfate during desalination in narrow spacer-filled channels[J]. Desalination, 2014, 345: 146-157. |
| [29] | ROLF Julianne, CAO Tianchi, HUANG Xiaochuan, et al. Inorganic scaling in membrane desalination: Models, mechanisms, and characterization methods[J]. Environmental Science & Technology, 2022, 56(12): 7484-7511. |
| [30] | Nicolás CIFUENTES-ARAYA, POURCELLY Gérald, BAZINET Laurent. Multistep mineral fouling growth on a cation-exchange membrane ruled by gradual sieving effects of magnesium and carbonate ions and its delay by pulsed modes of electrodialysis[J]. Journal of Colloid and Interface Science, 2012, 372(1): 217-230. |
| [31] | Meital ASRAF-SNIR, GILRON Jack, OREN Yoram. Scaling of cation exchange membranes by gypsum during Donnan exchange and electrodialysis[J]. Journal of Membrane Science, 2018, 567: 28-38. |
| [32] | MIKHAYLIN Sergey, NIKONENKO Victor, PISMENSKAYA Natalia, et al. How physico-chemical and surface properties of cation-exchange membrane affect membrane scaling and electroconvective vortices: Influence on performance of electrodialysis with pulsed electric field[J]. Desalination, 2016, 393: 102-114. |
| [33] | SIMONS Robert. Electric field effects on proton transfer between ionizable groups and water in ion exchange membranes[J]. Electrochimica Acta, 1984, 29(2): 151-158. |
| [34] | ZABOLOTSKY Viktor I, NIKONENKO Victor, PISMENSKAYA Natalia Dmitrievna, et al. Coupled transport phenomena in overlimiting current electrodialysis[J]. Separation and Purification Technology, 1998, 14(1/2/3): 255-267. |
| [35] | BELASHOVA Ekaterina, MIKHAYLIN Sergey, PISMENSKAYA Natalia Dmitrievna, et al. Impact of cation-exchange membrane scaling nature on the electrochemical characteristics of membrane system[J]. Separation and Purification Technology, 2017, 189: 441-448. |
| [36] | Nicolás CIFUENTES-ARAYA, Carolina ASTUDILLO-CASTRO, BAZINET Laurent. Mechanisms of mineral membrane fouling growth modulated by pulsed modes of current during electrodialysis: Evidences of water splitting implications in the appearance of the amorphous phases of magnesium hydroxide and calcium carbonate[J]. Journal of Colloid and Interface Science, 2014, 426: 221-234. |
| [37] | 刘彦伶, 李天玉, 王小𠇔, 等. 高压膜表面性质对膜污染的影响机制[J]. 环境工程, 2021, 39(7): 46-53, 45. |
| LIU Yanling, LI Tianyu, WANG Xiaomao, et al. Influence mechanism of surface properties on fouling behaviors of high-pressure membranes[J]. Environmental Engineering, 2021, 39(7): 46-53, 45. | |
| [38] | CHANDLER David. Interfaces and the driving force of hydrophobic assembly[J]. Nature, 2005, 437(7059): 640-647. |
| [39] | XU Hao, XIAO Kang, WANG Xiaomao, et al. Outlining the roles of membrane-foulant and foulant-foulant interactions in organic fouling during microfiltration and ultrafiltration: A mini-review[J]. Frontiers in Chemistry, 2020, 8: 417. |
| [40] | ZHAO Fan, MA Zhibo, XIAO Kang, et al. Hierarchically textured superhydrophobic polyvinylidene fluoride membrane fabricated via nanocasting for enhanced membrane distillation performance[J]. Desalination, 2018, 443: 228-236. |
| [41] | VAN OSS Carel J. Interfacial forces in aqueous media[M]//2nd ed. Boca Raton, FL: CRC/Taylor & Francis, 2006. |
| [42] | MU Situ, WANG Shu, LIANG Shuai, et al. Effect of the relative degree of foulant “hydrophobicity” on membrane fouling[J]. Journal of Membrane Science, 2019, 570/571: 1-8. |
| [43] | XIAO Kang, SHEN Yuexiao, LIANG Shuai, et al. A systematic analysis of fouling evolution and irreversibility behaviors of MBR supernatant hydrophilic/hydrophobic fractions during microfiltration[J]. Journal of Membrane Science, 2014, 467: 206-216. |
| [44] | TANAKA Nobuyuki, NAGASE Minami, HIGA Mitsuru. Organic fouling behavior of commercially available hydrocarbon-based anion-exchange membranes by various organic-fouling substances[J]. Desalination, 2012, 296: 81-86. |
| [45] | TANAKA Nobuyuki, NAGASE Minami, HIGA Mitsuru. Preparation of aliphatic-hydrocarbon-based anion-exchange membranes and their anti-organic-fouling properties[J]. Journal of Membrane Science, 2011, 384(1/2): 27-36. |
| [46] | CAI Huihui, FAN Hao, ZHAO Leihong, et al. Effects of surface charge on interfacial interactions related to membrane fouling in a submerged membrane bioreactor based on thermodynamic analysis[J]. Journal of Colloid and Interface Science, 2016, 465: 33-41. |
| [47] | XU Tongwen. Ion exchange membranes: State of their development and perspective[J]. Journal of Membrane Science, 2005, 263(1/2): 1-29. |
| [48] | WANG Jin, LIU Zheng, LUO Jian, et al. Determination of ζ-potential by measuring electroosmotic flux in an alternating electric field and its applications in the study of membrane fouling[J]. Separation Science and Technology, 2000, 35(8): 1195-1206. |
| [49] | PERSICO Mathieu, MIKHAYLIN Sergey, DOYEN Alain, et al. Formation of peptide layers and adsorption mechanisms on a negatively charged cation-exchange membrane[J]. Journal of Colloid and Interface Science, 2017, 508: 488-499. |
| [50] | PERSICO Mathieu, MIKHAYLIN Sergey, DOYEN Alain, et al. How peptide physicochemical and structural characteristics affect anion-exchange membranes fouling by a tryptic whey protein hydrolysate[J]. Journal of Membrane Science, 2016, 520: 914-923. |
| [51] | BACHER Luciana Ely, DE OLIVEIRA Cristiano, GIACOBBO Alexandre, et al. Coupling coagulation using tannin-based product with electrodialysis reversal to water treatment: A case study[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 6008-6015. |
| [52] | BDIRI Myriam, DAMMAK Lamiche, CHAABANE Lasâad, et al. Cleaning of cation-exchange membranes used in electrodialysis for food industry by chemical solutions[J]. Separation and Purification Technology, 2018, 199: 114-123. |
| [53] | GUO Haicheng, XIAO Lan, YU Shuili, et al. Analysis of anion exchange membrane fouling mechanism caused by anion polyacrylamide in electrodialysis[J]. Desalination, 2014, 346: 46-53. |
| [54] | PISMENSKAYA Natalia, SARAPULOVA Veronika, KLEVTSOVA Anastasia, et al. Adsorption of anthocyanins by cation and anion exchange resins with aromatic and aliphatic polymer matrices[J]. International Journal of Molecular Sciences, 2020, 21(21): 7874. |
| [55] | XIN Yongjia, BLIGH Mark W, KINSELA Andrew S, et al. Calcium-mediated polysaccharide gel formation and breakage: Impact on membrane foulant hydraulic properties[J]. Journal of Membrane Science, 2015, 475: 395-405. |
| [56] | MARKOV Ivan Vesselinov. Crystal growth for beginners: Fundamentals of nucleation, crystal growth and epitaxy[M]. Singapore: World Scientific Publishing Co. Pte. Ltd., 2003. |
| [57] | HANSIMA M A C K, KETHARANI Jegetheeswaran, SAMARAJEEWA D R, et al. Probing fouling mechanism of anion exchange membranes used in electrodialysis self-reversible treatment by humic acid and calcium ions[J]. Chemical Engineering Journal Advances, 2021, 8: 100173. |
| [58] | XIAO Zechun, GUO Hong, HE Hailong, et al. Unprecedented scaling/fouling resistance of omniphobic polyvinylidene fluoride membrane with silica nanoparticle coated micropillars in direct contact membrane distillation[J]. Journal of Membrane Science, 2020, 599: 117819. |
| [59] | WANG Rui, LIANG Dawei, LIU Xiaoxing, et al. Effect of magnesium ion on polysaccharide fouling[J]. Chemical Engineering Journal, 2020, 379: 122351. |
| [60] | XIA Qing, ZHOU Zhen, ZHAO Xiaodan, et al. Effects of calcium ions on anionic polyacrylamide fouling of ion-exchange membranes in desalination of polymer-flooding wastewater by electrodialysis[J]. Desalination, 2022, 535: 115846. |
| [61] | TIAGO Gonçalo, CRISTÓVÃO Maria Beatriz, MARQUES Ana Paula, et al. A study on biofouling and cleaning of anion exchange membranes for reverse electrodialysis[J]. Membranes, 2022, 12(7): 697. |
| [62] | YI Zhuan, LIU Cuijing, ZHU Liping, et al. Ion exchange and antibiofouling properties of poly(ether sulfone) membranes prepared by the surface immobilization of Brønsted acidic ionic liquids via double-click reactions[J]. Langmuir, 2015, 31(29): 7970-7979. |
| [63] | LUO Jinxue, ZHANG Jinsong, TAN Xiaohui, et al. The correlation between biofilm biopolymer composition and membrane fouling in submerged membrane bioreactors[J]. Biofouling, 2014, 30(9): 1093-1110. |
| [64] | JIA Fangxu, YANG Qing, LIU Xiuhong, et al. Stratification of extracellular polymeric substances (EPS) for aggregated anammox microorganisms[J]. Environmental Science & Technology, 2017, 51(6): 3260-3268. |
| [65] | HERZBERG Moshe, PANDIT Soumya, MAUTER Meagan S, et al. Bacterial biofilm formation on ion exchange membranes[J]. Journal of Membrane Science, 2020, 596: 117564. |
| [66] | KOZMAI Anton, SARAPULOVA Veronika, SHARAFAN Mikhail, et al. Electrochemical impedance spectroscopy of anion-exchange membrane AMX-Sb fouled by red wine components[J]. Membranes, 2021, 11(1): 2. |
| [67] | ZHAO Xuehao, WU Yinhu, ZHANG Xue, et al. Ozonation as an efficient pretreatment method to alleviate reverse osmosis membrane fouling caused by complexes of humic acid and calcium ion[J]. Frontiers of Environmental Science & Engineering, 2019, 13(4): 55. |
| [68] | TRAN Anh Thi Kim, JULLOK Nora, MEESSCHAERT Boudewijn, et al. Pellet reactor pretreatment: A feasible method to reduce scaling in bipolar membrane electrodialysis[J]. Journal of Colloid and Interface Science, 2013, 401: 107-115. |
| [69] | GOODMAN Nigel B, TAYLOR Russell J, XIE Zongli, et al. A feasibility study of municipal wastewater desalination using electrodialysis reversal to provide recycled water for horticultural irrigation[J]. Desalination, 2013, 317: 77-83. |
| [70] | SUN Wen, LIU Junxia, CHU Huaqiang, et al. Pretreatment and membrane hydrophilic modification to reduce membrane fouling[J]. Membranes, 2013, 3(3): 226-241. |
| [71] | LUICK Bret. Advances in food and nutrition research[J]. Journal of Nutrition Education and Behavior, 2020, 52(3): 336. |
| [72] | HADDAD Maryam, MIKHAYLIN Sergey, BAZINET Laurent, et al. Electrochemical acidification of kraft black liquor: Effect of fouling and chemical cleaning on ion exchange membrane integrity[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(1): 168-178. |
| [73] | CAO Renqiang, SHI Shaoyuan, DUAN Feng, et al. In-situ construction of modified layer on the surface of anion exchange membrane to improve antifouling performance[J]. Desalination, 2023, 562: 116684. |
| [74] | MULYATI Sri, TAKAGI Ryosuke, FUJII Akihiro, et al. Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition[J]. Journal of Membrane Science, 2013, 431: 113-120. |
| [75] | TANKA Yoshinobu. Ion exchange membranes-fundamentals and applications[M]. Amsterdam: Elsevier, 2007. |
| [76] | HOSSEINI Sayed Mohsen, MADAENI Sayed Siavash, HEIDARI Ali Rezaet al. Preparation and characterization of polyvinyl chloride/styrene butadiene rubber blend heterogeneous cation exchange membrane modified by potassium perchlorate[J]. Desalination, 2011, 279(1/2/3): 306-314. |
| [77] | KHOIRUDDIN Khoiruddin, ARIONO Danu, SUBAGJO Subagjo, et al. Improved anti-organic fouling of polyvinyl chloride-based heterogeneous anion-exchange membrane modified by hydrophilic additives[J]. Journal of Water Process Engineering, 2021, 41: 102007. |
| [78] | LI Yujiao, CAO Renqiang, SHI Shaoyuan, et al. GO-polymer modified anion exchange membranes for antifouling[J]. ACS Applied Nano Materials, 2023, 6(19): 18255-18262. |
| [79] | HAO Liang, LIAO Junbin, JIANG Yuliang, et al. “Sandwich” -like structure modified anion exchange membrane with enhanced monovalent selectivity and fouling resistant[J]. Journal of Membrane Science, 2018, 556: 98-106. |
| [80] | AOYAMA Shun, NAGASAWA Hiroki, KANEZASHI Masakoto, et al. Atmospheric-pressure plasma modification to control porous structure and affinity of organosilica membranes for pervaporation dehydration: Effect of plasma modification time[J]. Separation and Purification Technology, 2023, 320: 124167. |
| [81] | MASUELLI Martin Alberto, GRASSELLI Mariano, MARCHESE José, et al. Preparation, structural and functional characterization of modified porous PVDF membranes by γ-irradiation[J]. Journal of Membrane Science, 2012, 389: 91-98. |
| [82] | VASELBEHAGH Mahboobeh, KARKHANECHI Hamed, TAKAGI Ryosuke, et al. Effect of polydopamine coating and direct electric current application on anti-biofouling properties of anion exchange membranes in electrodialysis[J]. Journal of Membrane Science, 2016, 515: 98-108. |
| [83] | MAO Cuicui, WANG Xiao, ZHANG Wei, et al. Super-hydrophilic TiO2-based coating of anion exchange membranes with improved antifouling performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614: 126136. |
| [84] | ZHAO Zhijuan, SHI Shaoyuan, CAO Hongbin, et al. Property characterization and mechanism analysis on organic fouling of structurally different anion exchange membranes in electrodialysis[J]. Desalination, 2018, 428: 199-206. |
| [85] | LI Yujiao, SHI Shaoyuan, CAO Hongbin, et al. Improvement of the antifouling performance and stability of an anion exchange membrane by surface modification with graphene oxide (GO) and polydopamine (PDA)[J]. Journal of Membrane Science, 2018, 566: 44-53. |
| [86] | YAO Fubao. Study on electrodialysis reversal (EDR) process[J]. Desalination, 1985, 56: 315-324. |
| [87] | SOSA-FERNÁNDEZ Paulina A, POST Jan W, NABAALA Harrison L, et al. Experimental evaluation of anion exchange membranes for the desalination of (waste) water produced after polymer-flooding[J]. Membranes, 2020, 10(11): 352. |
| [88] | Nicolás CIFUENTES-ARAYA, POURCELLY Gérald, BAZINET Laurent. Impact of pulsed electric field on electrodialysis process performance and membrane fouling during consecutive demineralization of a model salt solution containing a high magnesium/calcium ratio[J]. Journal of Colloid and Interface Science, 2011, 361(1): 79-89. |
| [89] | NICHKA Vladlen S, GEOFFROY Thibaud R, NIKONENKO Victor, et al. Impacts of flow rate and pulsed electric field current mode on protein fouling formation during bipolar membrane electroacidification of skim milk[J]. Membranes, 2020, 10(9): 200. |
| [90] | DE JAEGHER Bram, DE SCHEPPER Wim, VERLIEFDE Arne, et al. A model-based analysis of electrodialysis fouling during pulsed electric field operation[J]. Journal of Membrane Science, 2022, 642: 119975. |
| [91] | LEE Hong-Joo, SONG Jung-Hoon, MOON Seung-Hyeon. Comparison of electrodialysis reversal (EDR) and electrodeionization reversal (EDIR) for water softening[J]. Desalination, 2013, 314: 43-49. |
| [92] | BUKHOVETS Alexey E, ELISEEVA Tatiana V, DALTHROPE N, et al. The influence of current density on the electrochemical properties of anion-exchange membranes in electrodialysis of phenylalanine solution[J]. Electrochimica Acta, 2011, 56(27): 10283-10287. |
| [93] | KOVALENKO A V, WESSLING Matthias, NIKONENKO Victor, et al. Space-charge breakdown phenomenon and spatio-temporal ion concentration and fluid flow patterns in overlimiting current electrodialysis[J]. Journal of Membrane Science, 2021, 636: 119583. |
| [94] | PERSICO Mathieu, MIKHAYLIN Sergey, DOYEN Alain, et al. Prevention of peptide fouling on ion-exchange membranes during electrodialysis in overlimiting conditions[J]. Journal of Membrane Science, 2017, 543: 212-221. |
| [95] | LOZA Sergey, LOZA Natalia, KUTENKO Natalia, et al. Profiled ion-exchange membranes for reverse and conventional electrodialysis[J]. Membranes, 2022, 12(10): 985. |
| [96] | Piotr DŁUGOŁĘCKI, Joanna DĄBROWSKA, NIJMEIJER Kitty, et al. Ion conductive spacers for increased power generation in reverse electrodialysis[J]. Journal of Membrane Science, 2010, 347(1/2): 101-107. |
| [97] | CAPPARELLI Clara, FERNANDEZ PULIDO Carlos Rolando, WIENCEK Richard Adam, et al. Resistance and permselectivity of 3D-printed micropatterned anion-exchange membranes[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26298-26306. |
| [98] | WON Young-June, JUNG Seon-Yeop, JANG June-Hee, et al. Correlation of membrane fouling with topography of patterned membranes for water treatment[J]. Journal of Membrane Science, 2016, 498: 14-19. |
| [99] | SOLONCHENKO Ksenia, KIRICHENKO Anna, KIRICHENKO Ksenia. Stability of ion exchange membranes in electrodialysis[J]. Membranes, 2023, 13(1): 52. |
| [100] | DAYARATHNE Narada, JEONG Sanghyun, JANG Am. Chemical-free scale inhibition method for seawater reverse osmosis membrane process: Air micro-nano bubbles[J]. Desalination, 2019, 461: 1-9. |
| [101] | CHEN Guizi, YANG Xing, WANG Rong, et al. Performance enhancement and scaling control with gas bubbling in direct contact membrane distillation[J]. Desalination, 2013, 308: 47-55. |
| [102] | NGHIEM Long D, CATH Tzahi. A scaling mitigation approach during direct contact membrane distillation[J]. Separation and Purification Technology, 2011, 80(2): 315-322. |
| [103] | GUO Haicheng, YOU Fanchao, YU Shuili, et al. Mechanisms of chemical cleaning of ion exchange membranes: A case study of plant-scale electrodialysis for oily wastewater treatment[J]. Journal of Membrane Science, 2015, 496: 310-317. |
| [104] | Ivan MERINO-GARCIA, VELIZAROV Svetlozar. New insights into the definition of membrane cleaning strategies to diminish the fouling impact in ion exchange membrane separation processes[J]. Separation and Purification Technology, 2021, 277: 119445. |
| [105] | XIA Qing, GUO Haicheng, YE Yubing, et al. Study on the fouling mechanism and cleaning method in the treatment of polymer flooding produced water with ion exchange membranes[J]. RSC Advances, 2018, 8(52): 29947-29957. |
| [106] | WANG Qian, YANG Pengbo, CONG Wei. Cation-exchange membrane fouling and cleaning in bipolar membrane electrodialysis of industrial glutamate production wastewater[J]. Separation and Purification Technology, 2011, 79(1): 103-113. |
| [107] | Wilder GARCIA-VASQUEZ, GHALLOUSSI Rim, DAMMAK Lasâad, et al. Structure and properties of heterogeneous and homogeneous ion-exchange membranes subjected to ageing in sodium hypochlorite[J]. Journal of Membrane Science, 2014, 452: 104-116. |
| [1] | 王博葳, 郑明朕, 王乐萌, 付东, 王珊, 朱生俊, 赵昆, 张盼. Na2SO4电解制备NaOH捕集CO2[J]. 化工进展, 2024, 43(S1): 604-614. |
| [2] | 张巍, 宋权斌, 周运河, 董梦瑶, 李婕, 伍乔, 付业昊, 梁垚城, 尹艳山, 成珊, 宋健. 全钒液流电池离子导电膜的选择性[J]. 化工进展, 2024, 43(9): 4859-4870. |
| [3] | 赵国珂, 张杨, 刘轶群. 膜法分离一/二价阳离子的研究进展[J]. 化工进展, 2024, 43(3): 1363-1373. |
| [4] | 刘大朋, 郑俊芝, 周学良, 张干伟, 沈舒苏, 洪耀良. 特殊浸润性多孔膜及其在膜蒸馏中的抗污染特性研究进展[J]. 化工进展, 2024, 43(12): 6769-6779. |
| [5] | 李耀翔, 范峥, 郝新宇, 刘姝延, 张叶, 韩洁. 基于人工智能混合模型的乙二醇电渗析脱盐优化[J]. 化工进展, 2024, 43(11): 6049-6058. |
| [6] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
| [7] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
| [8] | 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023, 42(7): 3501-3509. |
| [9] | 孙鲁芹, 卢会霞, 王建友. 电渗析/超滤内在耦合过程分离蛋清中溶菌酶[J]. 化工进展, 2023, 42(5): 2262-2271. |
| [10] | 陈彦睿, 张星冉, 李方. 基于层层自组装技术的抗污染膜研究进展[J]. 化工进展, 2023, 42(11): 5956-5968. |
| [11] | 刘雅娟. 浸没式PAC-AMBRs系统中PAC缓解膜污染的研究进展[J]. 化工进展, 2023, 42(1): 457-468. |
| [12] | 张洪铭, 卢炯元, 王三反. 燃料电池用阴离子交换膜分子结构研究进展[J]. 化工进展, 2022, 41(S1): 318-330. |
| [13] | 杨俊玲, 李翱, 陈悦, 朱光灿, 李淑萍, 陆勇泽. 铝系混凝剂减缓膜污染的红外光谱-多变量曲线分辨分析[J]. 化工进展, 2022, 41(9): 5132-5141. |
| [14] | 钱光磊, 谢陈鑫, 滕厚开, 赵慧, 任春燕. 低膜面流速下曝气对管式膜水力特性及膜污染影响[J]. 化工进展, 2022, 41(5): 2277-2284. |
| [15] | 李正, 牛静东, 何广泽, 张兰河, 张海丰. PVDF-PFTS/SiO2膜制备及抗混合污染性能[J]. 化工进展, 2022, 41(5): 2713-2721. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |