化工进展 ›› 2025, Vol. 44 ›› Issue (2): 914-927.DOI: 10.16085/j.issn.1000-6613.2024-0191
收稿日期:
2024-01-25
出版日期:
2025-02-25
发布日期:
2025-03-10
通讯作者:
张素风
作者简介:
崔书源(1998—),男,硕士研究生,研究方向为生物质基多功能水凝胶。E-mail:shuyuancui@sust.edu.cn。
基金资助:
CUI Shuyuan(), ZHANG Sufeng(
), ZHANG Fengjiao, JING Xiaokai, FENG Yao
Received:
2024-01-25
Online:
2025-02-25
Published:
2025-03-10
Contact:
ZHANG Sufeng
摘要:
采用“自上而下”法设计全木基水凝胶是一种制备功能化材料的新型策略,所得到的材料既保留了水凝胶原始的回弹性,同时又具有良好的力学特性和各向异性,在生物医药、柔性传感、环境保护等领域有着广泛的发展。本文综述了近年来“自上而下”设计全木基水凝胶的研究动向与发展。首先,阐述了“自下而上”和“自上而下”两种设计方法及全木基水凝胶的研究背景;其次,受木材天然结构启发,归纳了“自上而下”设计全木基水凝胶的原理,包括纤维素支架的制备及基质聚合物的选择,探讨了“自上而下”设计全木基水凝胶的前沿应用,包括可穿戴电子器件、骨修复支架、超级电容器及太阳能蒸发器等;最后,针对“自上而下”设计全木基水凝胶现存的挑战进行了总结与展望,建议后续研究着重关注该材料的各向异性、力学性能、普适性及绿色生产等问题,进一步为全木基水凝胶结构设计及前沿应用提供参考。
中图分类号:
崔书源, 张素风, 张凤娇, 景小凯, 冯瑶. “自上而下”设计全木基水凝胶的研究进展[J]. 化工进展, 2025, 44(2): 914-927.
CUI Shuyuan, ZHANG Sufeng, ZHANG Fengjiao, JING Xiaokai, FENG Yao. Research progress in "top-down" design of all-wood-based hydrogels[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 914-927.
设计方法 | 水凝胶名称 | 木材原料 | 力学强度 | 应用领域 | 参考文献 |
---|---|---|---|---|---|
“自下而上” | 聚2-羟乙基甲基丙烯酸酯/聚乙烯醇/聚吡咯修饰的纳米纤维素 (PHEMA/PVA/CNFs@PPy) | 纳米纤维素 | 约200kPa | 柔性传感 | [ |
聚乙烯醇/纳米纤维素/二甲基亚砜4(PCD4) | 纳米纤维素 | 86.4kPa | 超级电容器 | [ | |
卡拉胶/纤维素纳米晶(IC/CNC) | 纤维素纳米晶 | 约1.75kPa | 软机器人 | [ | |
含木质素纳米纤维素/聚丙烯酰胺水凝胶(LPH) | 纳米纤维素 | 350kPa | 凝胶电解质 | [ | |
氧化海藻酸钠/明胶/纳米纤维素(OSA/Gel/CNF) | 纳米纤维素 | 102.6kPa | 组织工程 | [ | |
“自上而下” | 聚乙烯醇/壳聚糖/2-丙烯酰胺基-2-甲基丙磺酸(CWH) | 巴沙木 | 9.5MPa | 柔性传感 | [ |
木质素磺酸盐/聚吡咯74-4h(LPWS74-4h) | 杉木 | 71MPa | 超级电容器 | [ | |
木材-聚(N-异丙基丙烯酰胺)(Wood-PNIPAM) | 椴木 | (1.1±0.2)MPa | 软机器人 | [ | |
木材/聚丙烯酸-径向(WPAAS-R) | 巴沙木 | 10.81MPa | 凝胶电解质 | [ | |
矿化木材水凝胶(MWH) | 松木 | (67.8±1.0)MPa | 组织工程 | [ |
表1 “自下而上”和“自上而下”设计水凝胶的力学性能对比
设计方法 | 水凝胶名称 | 木材原料 | 力学强度 | 应用领域 | 参考文献 |
---|---|---|---|---|---|
“自下而上” | 聚2-羟乙基甲基丙烯酸酯/聚乙烯醇/聚吡咯修饰的纳米纤维素 (PHEMA/PVA/CNFs@PPy) | 纳米纤维素 | 约200kPa | 柔性传感 | [ |
聚乙烯醇/纳米纤维素/二甲基亚砜4(PCD4) | 纳米纤维素 | 86.4kPa | 超级电容器 | [ | |
卡拉胶/纤维素纳米晶(IC/CNC) | 纤维素纳米晶 | 约1.75kPa | 软机器人 | [ | |
含木质素纳米纤维素/聚丙烯酰胺水凝胶(LPH) | 纳米纤维素 | 350kPa | 凝胶电解质 | [ | |
氧化海藻酸钠/明胶/纳米纤维素(OSA/Gel/CNF) | 纳米纤维素 | 102.6kPa | 组织工程 | [ | |
“自上而下” | 聚乙烯醇/壳聚糖/2-丙烯酰胺基-2-甲基丙磺酸(CWH) | 巴沙木 | 9.5MPa | 柔性传感 | [ |
木质素磺酸盐/聚吡咯74-4h(LPWS74-4h) | 杉木 | 71MPa | 超级电容器 | [ | |
木材-聚(N-异丙基丙烯酰胺)(Wood-PNIPAM) | 椴木 | (1.1±0.2)MPa | 软机器人 | [ | |
木材/聚丙烯酸-径向(WPAAS-R) | 巴沙木 | 10.81MPa | 凝胶电解质 | [ | |
矿化木材水凝胶(MWH) | 松木 | (67.8±1.0)MPa | 组织工程 | [ |
基质类型 | 基质聚合物 | 水凝胶名称 | 力学强度 | 应用领域 | 参考文献 |
---|---|---|---|---|---|
天然聚合物 | 丝素 | 100黑磷/脱木质素木材/再生丝素蛋白(100BP/WW/RSF) | 约3.5MPa | 组织工程 | [ |
明胶 | 脱木质素木材/明胶水凝胶100 (delignifed wood/gelatin hydrogels100) | (14.44±2.65)MPa | — | [ | |
壳聚糖 | 聚乙烯醇/壳聚糖/2-丙烯酰胺基-2-甲基丙磺酸(CWH) | 9.5MPa | 柔性传感 | [ | |
合成聚合物 | 聚乙烯醇(PVA) | 各向异性-20聚乙烯醇(HA-20PVA) | (23.5±2.7)MPa | — | [ |
聚丙烯酰胺(PAM) | 全木基复合水凝胶(WCH) | 19.8MPa | 柔性传感 | [ | |
碱处理木材接枝聚丙烯酰胺15(A-Wood-g-PAM15) | 30.76MPa | 柔性传感 | [ | ||
聚丙烯酸(PAA) | 巴沙木水凝胶(balsa hydrogel) | 52.7MPa | 储能装置 | [ |
表2 不同基质聚合物设计全木基水凝胶的力学性能对比
基质类型 | 基质聚合物 | 水凝胶名称 | 力学强度 | 应用领域 | 参考文献 |
---|---|---|---|---|---|
天然聚合物 | 丝素 | 100黑磷/脱木质素木材/再生丝素蛋白(100BP/WW/RSF) | 约3.5MPa | 组织工程 | [ |
明胶 | 脱木质素木材/明胶水凝胶100 (delignifed wood/gelatin hydrogels100) | (14.44±2.65)MPa | — | [ | |
壳聚糖 | 聚乙烯醇/壳聚糖/2-丙烯酰胺基-2-甲基丙磺酸(CWH) | 9.5MPa | 柔性传感 | [ | |
合成聚合物 | 聚乙烯醇(PVA) | 各向异性-20聚乙烯醇(HA-20PVA) | (23.5±2.7)MPa | — | [ |
聚丙烯酰胺(PAM) | 全木基复合水凝胶(WCH) | 19.8MPa | 柔性传感 | [ | |
碱处理木材接枝聚丙烯酰胺15(A-Wood-g-PAM15) | 30.76MPa | 柔性传感 | [ | ||
聚丙烯酸(PAA) | 巴沙木水凝胶(balsa hydrogel) | 52.7MPa | 储能装置 | [ |
1 | 黄薇, 李红强, 官航, 等. 天然木材的功能化及其应用进展[J]. 材料导报, 2022, 36(18): 224-230. |
HUANG Wei, LI Hongqiang, GUAN Hang, et al. Advances in functionalization and application of natural woods[J]. Materials Reports, 2022, 36(18): 224-230. | |
2 | 谭乾权. 国土绿化助力“双碳”目标实现[J]. 生态经济, 2023,39(5): 9-12. |
TAN Qianquan. Land greening helps achieve the goal of “double carbon”[J]. Ecological Economy, 2023,39(5): 9-12. | |
3 | ACHRAF Berradi, FAISSAL Aziz, Achaby Mounir EL, et al. A comprehensive review of polysaccharide-based hydrogels as promising biomaterials[J]. Polymers, 2023, 15(13): 2908-2957. |
4 | AJDARY Rubina, TARDY Blaise L, MATTOS Bruno D, et al. Plant nanomaterials and inspiration from nature: Water interactions and hierarchically structured hydrogels[J]. Advanced Materials, 2021, 33(28): 2001085. |
5 | 沈娟莉, 付时雨. 纤维素基水凝胶的研究进展[J]. 化工进展, 2022, 41(6): 3022-3037. |
SHEN Juanli, FU Shiyu. Research progress of cellulose-based hydrogels[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3022-3037. | |
6 | YUAN Juzheng, WANG Yang, YANG Wenguang, et al. Biomimetic peptide dynamic hydrogel inspired by humanized defensin nanonets as the wound-healing gel coating[J]. Chemical Engineering Journal, 2023, 470: 144266. |
7 | GONG Min, SHI Huanhuan, HU Zuquan, et al. Aerogel-hydrogel biphase gels based on physically crosslinked β-lactoglobulin fibrils/polyvinyl alcohol for skin wound dressings: In vitro and in vivo characterization[J]. Chemical Engineering Journal, 2023, 473: 145394. |
8 | XUAN Hongyun, WU Shuyuan, JIN Yan, et al. A bioinspired self-healing conductive hydrogel promoting peripheral nerve regeneration[J]. Advanced Science, 2023, 10(28): e2302519. |
9 | YAN Yichen, DUAN Sidi, LIU Bo, et al. Tough hydrogel electrolytes for anti-freezing zinc-ion batteries[J]. Advanced Materials, 2023, 35(18): 2211673. |
10 | YANG Jinlin, YU Zehua, WU Jiawen, et al. Hetero-polyionic hydrogels enable dendrites-free aqueous Zn-I2 batteries with fast kinetics[J]. Advanced Materials, 2023, 35(44): 2306531. |
11 | FU Qingjin, HAO Sanwei, ZHANG Xinrui, et al. All-round supramolecular zwitterionic hydrogel electrolytes enabling environmentally adaptive dendrite-free aqueous zinc ion capacitors[J]. Energy & Environmental Science, 2023, 16(3): 1291-1311. |
12 | GHOSH Ashis, PANDIT Sangita, KUMAR Sudhir, et al. Designing dynamic metal-coordinated hydrophobically associated mechanically robust and stretchable hydrogels for versatile, multifunctional applications in strain sensing, actuation and flexible supercapacitors[J]. Chemical Engineering Journal, 2023, 475: 146160. |
13 | WANG Xiao, CHEN Wenwen, SHI Xiaoyu, et al. Microfluidics-assisted fabrication of all-flexible substrate-free micro-supercapacitors with customizable configuration and high performance[J]. Advanced Energy Materials, 2023, 13(28): 2203535. |
14 | HE Qingsong, ZHONG Qiyun, SUN Zheng, et al. Highly stretchable, repeatable, and easy-to-prepare ionogel based on polyvinyl chloride for wearable strain sensors[J]. Nano Energy, 2023, 113: 108535. |
15 | NI Yimeng, ZANG Xuerui, CHEN Jiajun, et al. Flexible MXene-based hydrogel enables wearable human-computer interaction for intelligent underwater communication and sensing rescue[J]. Advanced Functional Materials, 2023, 33(49): 2301127. |
16 | QU Juntian, YUAN Qiangjing, LI Zhenkun, et al. All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping[J]. Nano Energy, 2023, 111: 108387. |
17 | XUE Pan, VALENZUELA Cristian, MA Shaoshuai, et al. Highly conductive MXene/PEDOT: PSS‐integrated poly(N‐isopropylacrylamide) hydrogels for bioinspired somatosensory soft actuators[J]. Advanced Functional Materials, 2023, 33(24): 2214867-2214878. |
18 | CHEN Zehong, HU Yijie, SHI Ge, et al. Advanced flexible materials from nanocellulose[J]. Advanced Functional Materials, 2023, 33(18): 2214245. |
19 | HU Yanlei, SHI Mengyue, LIU Liang, et al. Top-down extraction of surface carboxylated-silk nanocrystals and application in hydrogel preparation[J]. International Journal of Biological Macromolecules, 2021, 174: 162-174. |
20 | KEPLINGER Tobias, WANG Xiaoqing, BURGERT Ingo. Nanofibrillated cellulose composites and wood derived scaffolds for functional materials[J]. Journal of Materials Chemistry A, 2019, 7(7): 2981-2992. |
21 | WANG Zhongguo, ZHANG Xiongfei, SHU Lian, et al. Construction of MXene functionalized wood-based hydrogels using ZnCl2 aqueous solution for flexible electronics[J]. Journal of Materials Chemistry A, 2023, 11(19): 10337-10345. |
22 | ZHU Sailing, KUMAR BISWAS Subir, QIU Zhe, et al. Transparent wood-based functional materials via a top-down approach[J]. Progress in Materials Science, 2023, 132: 101025. |
23 | CHEN Cheng, WANG Jiajun, XU Ziqi, et al. Highly stretchable, self-healable and adhesive, thermal responsive conductive hydrogel loading nanocellulose complex for a flexible sensor[J]. International Journal of Biological Macromolecules, 2023, 247: 125595. |
24 | BAO Yueyue, HAN Lu, PENG Wenwu, et al. Hydrogen bond regulating in hydrogel electrolytes for enhancing the antifreeze ability of a flexible zinc-ion hybrid supercapacitor[J]. Sustainable Energy & Fuels, 2023, 7(9): 2094-2103. |
25 | DING Laiqian, LI Mingyang, LIU Chong, et al. Study on characteristics of the electric-field-sensitive hydrogel inspired by jelly in the ampullae of Lorenzini of elasmobranchs[J]. Polymers for Advanced Technologies, 2022, 33(10): 3681-3689. |
26 | LI Zhenglin, ZHOU Guoqiang, YE Lei, et al. High-energy and dendrite-free solid-state zinc metal battery enabled by a dual-network and water-confinement hydrogel electrolyte[J]. Chemical Engineering Journal, 2023, 472: 144992. |
27 | CUI Shuyuan, ZHANG Sufeng, COSERI Sergiu. An injectable and self-healing cellulose nanofiber-reinforced alginate hydrogel for bone repair[J]. Carbohydrate Polymers, 2023, 300: 120243. |
28 | XIONG Jiuming, WU Weijun, HU Yufang, et al. An anisotropic conductive hydrogel for strain sensing and breath detection[J]. Applied Materials Today, 2023, 34: 101909. |
29 | ZHANG Zhicheng, YU Chuying, PENG Zhiyuan, et al. Mechanically stiff and high-areal-performance integrated all-in-wood supercapacitors with electroactive biomass-based hydrogel[J]. Cellulose, 2021, 28(1): 389-404. |
30 | CHEN Lian, WEI Xianshuo, WANG Feng, et al. In-situ polymerization for mechanical strong composite actuators based on anisotropic wood and thermoresponsive polymer[J]. Chinese Chemical Letters, 2022, 33(5): 2635-2638. |
31 | CHEN Jialin, LIU Yongxu, WANG Dejuan, et al. Wood vessel-confined anti-swelling hydrogel for efficient osmotic energy conversion[J]. Nano Energy, 2022, 104: 107981. |
32 | WANG Xiaofei, FANG Ju, ZHU Weiwei, et al. Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive mineralized wood hydrogel composites for bone repair[J]. Advanced Functional Materials, 2021, 31(20): 2010068. |
33 | 王东, 林兰英, 傅峰. 木材多尺度结构差异对其破坏影响的研究进展[J]. 林业科学, 2020, 56(8): 141-147. |
WANG Dong, LIN Lanying, FU Feng. The effects of multiscale structure differences on wood fracture—A review[J]. Scientia Silvae Sinicae, 2020, 56(8): 141-147. | |
34 | 李安鑫, 吕建雄, 蒋佳荔. 木材细胞壁结构及其流变特性研究进展[J]. 林业科学, 2017, 53(12): 136-143. |
LI Anxin, Jianxiong LÜ, JIANG Jiali. A review of wood cell wall structure and its rheological property[J]. Scientia Silvae Sinicae, 2017, 53(12): 136-143. | |
35 | LI Kai, WANG Shennan, CHEN Hui, et al. Self-densification of highly mesoporous wood structure into a strong and transparent film[J]. Advanced Materials, 2020, 32(42): e2003653. |
36 | CHEN Chaoji, HU Liangbing. Nanoscale ion regulation in wood-based structures and their device applications[J]. Advanced Materials, 2021, 33(28): 2002890. |
37 | WANG Jifu, ZHANG Daihui, CHU Fuxiang. Wood-derived functional polymeric materials[J]. Advanced Materials, 2021, 33(28): 2001135. |
38 | WANG Zhaohui, TAMMELA Petter, Maria STRØMME, et al. Cellulose-based supercapacitors: Material and performance considerations[J]. Advanced Energy Materials, 2017, 7(18): 1700130. |
39 | MAO Yimin, HU Liangbing, REN Zhiyong Jason. Engineered wood for a sustainable future[J]. Matter, 2022, 5(5): 1326-1329. |
40 | LIU Chao, LUAN Pengcheng, LI Qiang, et al. Biopolymers derived from trees as sustainable multifunctional materials: A review[J]. Advanced Materials, 2021, 33(28): 2001654. |
41 | TAI Hwan-Ching, CHANG Chih-Hui, CAI Wenjie, et al. Wood cellulose microfibrils have a 24-chain core-shell nanostructure in seed plants[J]. Nature Plants, 2023, 9(7): 1154-1168. |
42 | 李坚, 孙庆丰. 大自然给予的启发——木材仿生科学刍议[J]. 中国工程科学, 2014, 16(4): 4-12, 2. |
LI Jian, SUN Qingfeng. Inspirations from nature—Preliminary discussion of wood bionics[J]. Engineering Sciences, 2014, 16(4): 4-12, 2. | |
43 | CHEN Chaoji, KUANG Yudi, ZHU Shuze, et al. Structure-property-function relationships of natural and engineered wood[J]. Nature Reviews Materials, 2020, 5(9): 642-666. |
44 | LI Yuanyuan, VASILEVA Elena, SYCHUGOV Ilya, et al. Optically transparent wood: Recent progress, opportunities, and challenges[J]. Advanced Optical Materials, 2018, 6(14): 1800059. |
45 | CHEN Zhen, WANG Huigang, CAO Yunteng, et al. Bio-inspired anisotropic hydrogels and their applications in soft actuators and robots[J]. Matter, 2023, 6(11): 3803-3837.. |
46 | KEPLINGER Tobias, WITTEL Falk K, Markus RÜGGEBERG, et al. Wood derived cellulose scaffolds—Processing and mechanics[J]. Advanced Materials, 2021, 33(28): 2001375. |
47 | GIERER J. Chemistry of delignification[J]. Wood Science and Technology, 1985, 19(4): 289-312. |
48 | SONG Jianwei, CHEN Chaoji, ZHU Shuze, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554(7691): 224-228. |
49 | DONG Xiaofei, GAN Wentao, SHANG Ying, et al. Low-value wood for sustainable high-performance structural materials[J]. Nature Sustainability, 2022, 5(7): 628-635. |
50 | GAREMARK Jonas, YANG Xuan, SHENG Xia, et al. Top-down approach making anisotropic cellulose aerogels as universal substrates for multifunctionalization[J]. ACS Nano, 2020, 14(6): 7111-7120. |
51 | YAN Guihua, HE Shuaiming, MA Sen, et al. Catechol-based all-wood hydrogels with anisotropic, tough, and flexible properties for highly sensitive pressure sensing[J]. Chemical Engineering Journal, 2022, 427: 131896. |
52 | FREY Marion, WIDNER Daniel, SEGMEHL Jana S, et al. Delignified and densified cellulose bulk materials with excellent tensile properties for sustainable engineering[J]. ACS Applied Materials & Interfaces, 2018, 10(5): 5030-5037. |
53 | FREY Marion, BIFFI Giulia, Maria ADOBES-VIDAL, et al. Tunable wood by reversible interlocking and bioinspired mechanical gradients[J]. Advanced Science, 2019, 6(10): 1802190-1802198. |
54 | ZHANG Xiaotong, WU Baohu, SUN Shengtong, et al. Hybrid materials from ultrahigh-inorganic-content mineral plastic hydrogels: Arbitrarily shapeable, strong, and tough[J]. Advanced Functional Materials, 2020, 30(19): 1910425. |
55 | XIA Qinqin, CHEN Chaoji, YAO Yonggang, et al. In situ lignin modification toward photonic wood[J]. Advanced Materials, 2021, 33(8): 2001588. |
56 | ZHOU Weijun, WU Tian, CHEN Minfeng, et al. Wood-based electrodes enabling stable, anti-freezing, and flexible aqueous zinc-ion batteries[J]. Energy Storage Materials, 2022, 51: 286-293. |
57 | SOARES Belinda, COSTA LOPES André M DA, SILVESTRE Armando J D, et al. Wood delignification with aqueous solutions of deep eutectic solvents[J]. Industrial Crops and Products, 2021, 160: 113128. |
58 | SHEN Feiyue, XU Jiayi, YAN Jiaxin, et al. Facile fabrication of functionalized wood evaporator through deep eutectic solvent delignification for efficient solar-driven water purification[J]. Journal of Environmental Chemical Engineering, 2023, 11(6): 111234. |
59 | CHEN Zhijun, DANG Ben, LUO Xiongfei, et al. Deep eutectic solvent-assisted in situ wood delignification: A promising strategy to enhance the efficiency of wood-based solar steam generation devices[J]. ACS Applied Materials & Interfaces, 2019, 11(29): 26032-26037. |
60 | HU Zhichao, LU Jiaqi, HU Annan, et al. Engineering BPQDs/PLGA nanospheres-integrated wood hydrogel bionic scaffold for combinatory bone repair and osteolytic tumor therapy[J]. Chemical Engineering Journal, 2022, 446: 137269. |
61 | WANG Shennan, LI Kai, ZHOU Qi. High strength and low swelling composite hydrogels from gelatin and delignified wood[J]. Scientific Reports, 2020, 10: 17842. |
62 | WANG Zhenwu, WEI Hua, HUANG Youju, et al. Naturally sourced hydrogels: Emerging fundamental materials for next-generation healthcare sensing[J]. Chemical Society Reviews, 2023, 52(9): 2992-3034. |
63 | YU Zhilong, QIN Bing, MA Zhiyuan, et al. Emerging bioinspired artificial woods[J]. Advanced Materials, 2021, 33(28): 2001086. |
64 | HUA Mutian, WU Shuwang, MA Yanfei, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out[J]. Nature, 2021, 590(7847): 594-599. |
65 | DONG Yue, PAN Nana, ZHU Minghao, et al. An anti-swelling, strong and flexible wood-based composite hydrogel as strain sensor [J]. Industrial Crops and Products, 2022, 187: 115491. |
66 | CHEN Chuchu, WANG Yiren, ZHOU Tong, et al. Toward strong and tough wood-based hydrogels for sensors[J]. Biomacromolecules, 2021, 22(12): 5204-5213. |
67 | CHEN Gegu, LI Tian, CHEN Chaoji, et al. Scalable wood hydrogel membrane with nanoscale channels[J]. ACS Nano, 2021, 15(7): 11244-11252. |
68 | LI Junyao, WANG Yu, YUE Yiying. A transparent, high-strength, and recyclable core-shell structured wood hydrogel integrated with carbon dots for photodegradation of rhodamine B[J]. ACS Applied Nano Materials, 2023, 6(4): 2894-2907. |
69 | LI Hang, WANG Chi, WANG Zhaohui, et al. Bioinspired mineralized wood hydrogel composites with flame retardant properties [J]. Materials Today Communications, 2022, 31: 103479. |
70 | LI Gang, LI Chenglong, LI Guodong, et al. Development of conductive hydrogels for fabricating flexible strain sensors[J]. Small, 2022, 18(5): 2101518-2101555. |
71 | 王思恒, 杨欣欣, 刘鹤, 等. 导电水凝胶的制备及应用研究进展[J]. 化工进展, 2021, 40(5): 2646-2664. |
WANG Siheng, YANG Xinxin, LIU He, et al. Research progress in preparation and application of conductive hydrogels[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2646-2664. | |
72 | NIE Kangchen, WANG Zhaosong, TANG Ruixin, et al. Anisotropic, flexible wood hydrogels and wrinkled, electrodeposited film electrodes for highly sensitive, wide-range pressure sensing[J]. ACS Applied Materials & Interfaces, 2020, 12(38): 43024-43031. |
73 | YAN Guihua, HE Shuaiming, CHEN Gaofeng, et al. Highly flexible and broad-range mechanically tunable all-wood hydrogels with nanoscale channels via the hofmeister effect for human motion monitoring[J]. Nano-Micro Letters, 2022, 14(1): 84. |
74 | WANG Zhenxing, ZHOU Zijing, WANG Sijie, et al. An anti-freezing and strong wood-derived hydrogel for high-performance electronic skin and wearable sensing[J]. Composites B: Engineering, 2022, 239: 109954. |
75 | CHEN Chuchu, WANG Yiren, WU Qijing, et al. Highly strong and flexible composite hydrogel reinforced by aligned wood cellulose skeleton via alkali treatment for muscle-like sensors[J]. Chemical Engineering Journal, 2020, 400: 125876. |
76 | RAN Chao, WANG Jiacheng, HE Yonggang, et al. Recent advances in bioinspired hydrogels with environment-responsive characteristics for biomedical applications[J]. Macromolecular Bioscience, 2022, 22(6): 2100474-2100490. |
77 | Pablo SÁNCHEZ-CID, Mercedes JIMÉNEZ-ROSADO, ROMERO Alberto, et al. Novel trends in hydrogel development for biomedical applications: A review[J]. Polymers, 2022, 14(15): 3023. |
78 | HE Lei, LIU Yongze, CHEN Feng, et al. Flexible wood-based pH-responsive hydrogel excipient for rapid recovery of infected wounds[J]. Reactive and Functional Polymers, 2023, 192: 105707. |
79 | HE Lei, LIU Yongze, SONG Panpan, et al. Efficient photothermal, flexible wood-based hydrogel for infected wound recovery[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(31): 11529-11540. |
80 | CHEN Jiaqing, CHEN Jingsheng, ZHU Zelin, et al. Drug-loaded and anisotropic wood-derived hydrogel periosteum with super antibacterial, anti-inflammatory, and osteogenic activities[J]. ACS Applied Materials & Interfaces, 2022, 14(45): 50485-50498. |
81 | CHEN Jiaqing, HE Xiangheng, SUN Tianyi, et al. Highly elastic and anisotropic wood-derived composite scaffold with antibacterial and angiogenic activities for bone repair[J]. Advanced Healthcare Materials, 2023, 12(21): 2300122-2300137. |
82 | MAHDAVIAN Faezeh, ALLAHBAKHSH Ahmad, BAHRAMIAN Ahmad Reza, et al. Flexible polymer hydrogels for wearable energy storage applications[J]. Advanced Materials Technologies, 2023, 8(14): 2202199-2202236. |
83 | CHEN Yuanyuan, HE Sijing, RONG Qinfeng. Recent progress in environment-adaptable hydrogel electrolytes for flexible energy storage devices[J]. Journal of Energy Storage, 2023, 73: 109023. |
84 | KONG Weiqing, WANG Chengwei, JIA Chao, et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels[J]. Advanced Materials, 2018, 30: 1801934. |
85 | WEI Song, WAN Caichao, WU Yiqiang. Recent advances in wood-based electrode materials for supercapacitors[J]. Green Chemistry, 2023, 25: 3322-3353. |
86 | GAO Chenxiang, GAO Zunchang, WEI Yanqing, et al. Flexible wood enhanced poly(acrylic acid-co-acrylamide)/quaternized gelatin hydrogel electrolytes for high-energy-density supercapacitors[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 2951-2960. |
87 | KIM Jungbin, HONG Seungkwan. Pilot study of emerging low-energy seawater reverse osmosis desalination technologies for high-salinity, high-temperature, and high-turbidity seawater[J]. Desalination, 2023, 565: 116871. |
88 | SALEHI Ali Akbar, Mohammad GHANNADI-MARAGHEH, Meisam TORAB-MOSTAEDI, et al. Hydrogel materials as an emerging platform for desalination and the production of purified water[J]. Separation & Purification Reviews, 2021, 50(4): 380-399. |
89 | CHEN Xi, HE Shuaiming, FALINSKI Mark M, et al. Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators[J]. Energy & Environmental Science, 2021, 14(10): 5347-5357. |
90 | LI Lin, HE Nan, YANG Sen, et al. Strong tough hydrogel solar evaporator with wood skeleton construction enabling ultra-durable brine desalination[J]. EcoMat, 2023, 5(1): e12282. |
91 | CHEN Jie, JIAN Muqiang, YANG Xiaoyi, et al. Highly effective multifunctional solar evaporator with scaffolding structured carbonized wood and biohydrogel[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 46491-46501. |
92 | FAN Deqi, LU Yi, XU Xueling, et al. Multifunctional wood-based hydrogels for wastewater treatment and interfacial solar steam generation[J]. Chemical Engineering Journal, 2023, 471: 144421. |
93 | CAI Yahui, WU Jianfei, WANG Kaili, et al. Thermo-controlled, self-released smart wood tailored by nanotechnology for fast clean-up of highly viscous liquids[J]. SmartMat, 2023, 4(1): e1133. |
94 | CHEN Xiaoli, Shangjie GE-ZHANG, HAN Yu, et al. Ultraviolet-assisted modified delignified wood with high transparency[J]. Applied Sciences, 2022, 12(15):7406. |
95 | WANG Shennan, CHEN Hui, LI Kai, et al. Strong, transparent, and thermochromic composite hydrogel from wood derived highly mesoporous cellulose network and PNIPAM[J]. Composites Part A: Applied Science and Manufacturing, 2022, 154: 106757. |
96 | LIU Sai, Chi Yan TSO, DU Yuwei, et al. Bioinspired thermochromic transparent hydrogel wood with advanced optical regulation abilities and mechanical properties for windows[J]. Applied Energy, 2021, 297: 117207. |
97 | VAHABI Henri, GHOLAMI Fatemeh, TOMAS Martin, et al. Hydrogel and aerogel-based flame-retardant polymeric materials: A review[J]. Journal of Vinyl and Additive Technology, 2024, 30(1): 5-25. |
98 | Joanna MASTALSKA-POPŁAWSKA, Łukasz WÓJCIK, IZAK Piotr. Applications of hydrogels with fire retardant properties—A review[J]. Journal of Sol-Gel Science and Technology, 2023, 105(3): 608-624. |
99 | LIN Xianxian, GUO Xi, QIU Chendong, et al. A reversibly flame-retardant thermal regulation material inspired by leaf transpiration[J]. Chemical Engineering Journal, 2023, 470: 144221. |
[1] | 王向鹏, 郑云香, 张春晓, 陈春茂. 碳点杂化水凝胶的制备及应用[J]. 化工进展, 2025, 44(1): 305-318. |
[2] | 郝康安, 周颖, 刘川, 俞润昊, 黄安荣, 吴翀, 左晓玲. 荧光水凝胶基信息储存材料的构筑及其加密性能研究进展[J]. 化工进展, 2024, 43(9): 5013-5025. |
[3] | 曹树扬, 施静波, 董友明, 吕建雄. 不同温度下斜叶桉木材吸湿、解吸等温线与热力学性质[J]. 化工进展, 2024, 43(9): 5095-5105. |
[4] | 郑云香, 高艺伦, 李宴汝, 刘青霖, 张浩腾, 王向鹏. 氨基三乙酸酐改性多孔双网络水凝胶的制备及吸附性能[J]. 化工进展, 2024, 43(8): 4542-4549. |
[5] | 张蕾, 杜红英, 冯文浩, 郭军康. 基于二维光热材料的界面太阳能光热蒸发系统优化[J]. 化工进展, 2024, 43(8): 4571-4586. |
[6] | 武哲, 曲树光, 冯练享, 曾湘楚. 海藻酸钠/微晶纤维素复合水凝胶对水中甲基橙和亚甲基蓝的吸附性能与机理[J]. 化工进展, 2024, 43(8): 4681-4693. |
[7] | 谢蒙蒙, 刘健, 党蕊, 李美馨, 林晓婷, 苏舟, 王洁. 离子导电水凝胶的制备及在柔性电子领域的应用[J]. 化工进展, 2024, 43(6): 3128-3144. |
[8] | 龚雪梅, 蒋军, 王超, 梅长彤. 纳米纤维素疏水改性及其功能化应用研究进展[J]. 化工进展, 2024, 43(6): 3187-3198. |
[9] | 刘萌萌, 秋列维, 万智卫, 李世婧, 许玉雨. 自愈水凝胶的设计原理及应用[J]. 化工进展, 2024, 43(3): 1350-1362. |
[10] | 剧芳. 基于银-硫配位的协同抗菌水凝胶的制备与性能[J]. 化工进展, 2024, 43(2): 1039-1046. |
[11] | 郑佳, 刘一鸣, 许利刚, 姚琳. 温度与pH双重刺激响应变色水凝胶的制备及性能[J]. 化工进展, 2024, 43(12): 6811-6819. |
[12] | 向文丽, 唐辉, 许天乐, 张宝印. 腰果酚基不饱和树脂在木材增强改性中的应用[J]. 化工进展, 2024, 43(10): 5653-5662. |
[13] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
[14] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[15] | 冯琬淇, 哈尼夏·巴合提null, 葛雨璇, 赵俭波. 磁性PASP/PAM半互穿水凝胶的制备及性能[J]. 化工进展, 2023, 42(6): 3130-3137. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 12
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 38
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |