化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2803-2810.DOI: 10.16085/j.issn.1000-6613.2024-0015
• 二氧化碳捕集与资源化利用 • 上一篇
冯帮满1(), 岳成光1, 王美岩1,2(), 王悦1, 马新宾1
收稿日期:
2024-01-04
修回日期:
2024-02-17
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
王美岩
作者简介:
冯帮满(2000—),男,硕士研究生,研究方向为CO2高值转化。E-mail:fengbangman0312@tju.edu.cn。
基金资助:
FENG Bangman1(), YUE Chengguang1, WANG Mei-Yan1,2(), WANG Yue1, MA Xinbin1
Received:
2024-01-04
Revised:
2024-02-17
Online:
2024-05-15
Published:
2024-06-15
Contact:
WANG Mei-Yan
摘要:
CO2和环氧化物的环加成反应是一种有效且可持续的CO2化工转化策略,其产品环碳酸酯在锂离子电池、高分子材料等领域具有广泛应用。其中环氧化物的开环被认为是该反应的关键步骤,因此构筑具有高效环氧化物吸附活化位点的催化剂至关重要。本文通过单宁酸与锆离子的配位作用,“一锅法”制备同时含有锆金属中心作为Lewis酸位点和酚羟基作为氢键作用位点的非均相单宁酸-锆介孔材料TA-Zr-2。XPS和环氧丙烷TPD-MS结果表明,与同为锆基多孔材料的UiO-66相比,TA-Zr-2的锆金属中心具有更强的Lewis酸性,对环氧丙烷具有更强的吸附活化作用。在TA-Zr-2的基础上通过冷冻干燥优化处理得到了具有更大比表面积和合适孔体积的TA-Zr-2-FD材料,25℃下催化性能提升1倍,24h的碳酸丁烯酯收率达97.6%。本文使用简单绿色的制备方法,构建了具有较大比表面积的单宁酸-锆介孔材料,锆Lewis酸位点和酚羟基氢键位点的耦合使其具有良好的环氧化物吸附活化作用,利于环氧化物的开环,使得该催化剂在25℃下表现出良好的CO2环加成反应催化性能。
中图分类号:
冯帮满, 岳成光, 王美岩, 王悦, 马新宾. 非均相单宁酸-锆介孔材料制备及其CO2环加成反应催化性能[J]. 化工进展, 2024, 43(5): 2803-2810.
FENG Bangman, YUE Chengguang, WANG Mei-Yan, WANG Yue, MA Xinbin. Fabrication of heterogeneous tannic acid-zirconium mesoporous material and the catalytic performance on cycloaddition of CO2 with epoxide[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2803-2810.
样品 | BET比表面积/m²·g-1 | 孔体积/cm³·g-1 | 平均孔径/nm | Zr质量分数④/% |
---|---|---|---|---|
TA-Zr-1 | 95 | 0.496① | 21.7 | 17.2 |
TA-Zr-2 | 210 | 0.616① | 10.2 | 25.4 |
TA-Zr-3 | 79 | 0.286① | 13.9 | 37.5 |
TA-Zr-2-FD | 256 | 0.681① | 11.0 | 24.8 |
UiO-66 | 867 | 0.327② | 1.9③ | 32.9 |
表1 TA-Zr材料与UiO-66的N2物理吸附-脱附结果及Zr质量分数
样品 | BET比表面积/m²·g-1 | 孔体积/cm³·g-1 | 平均孔径/nm | Zr质量分数④/% |
---|---|---|---|---|
TA-Zr-1 | 95 | 0.496① | 21.7 | 17.2 |
TA-Zr-2 | 210 | 0.616① | 10.2 | 25.4 |
TA-Zr-3 | 79 | 0.286① | 13.9 | 37.5 |
TA-Zr-2-FD | 256 | 0.681① | 11.0 | 24.8 |
UiO-66 | 867 | 0.327② | 1.9③ | 32.9 |
序号 | 催化剂/助催化剂 | 反应条件 | 产率 /% | 参考 文献 |
---|---|---|---|---|
1① | ZrO2 | 150℃/5MPa/24h | 62.0 | [ |
2② | CA/TBAB | 25℃/1MPa/36h | 97.0 | [ |
3③ | CoTPP-PiP(Br) | 60℃/1MPa/24h | 95.0 | [ |
4④ | ER-7 | 100℃/2MPa/24h | 99.0 | [ |
5⑤ | Schiffbase ligands-Co complex | 120℃/0.1MPa/72h | 84.0 | [ |
6⑥ | Co-Phen-POP/TBAB | 25℃/1MPa/48h | 81.0 | [ |
7⑦ | CoPc/g-C3N4 | 130℃/3MPa/24h | 72.0 | [ |
8⑧ | u-g-C3N4-480 | 130℃/2MPa/24h | 99.0 | [ |
9⑨ | [OSSO]-Cr/TBAC | 45℃/1MPa/24h | 60.0 | [ |
10⑩ | MIL-101/TBAB | 25℃/1MPa/24h | 82.0 | [ |
11⑪ | SiO2@ZIF-67/TBAB | 80℃/2MPa/24h | 97.0 | [ |
12 | TA-Zr-2-FD/TBAI | 25℃/1MPa/24h | 97.6 | 本工作 |
表2 TA-Zr-2-FD材料与已报道催化剂环加成性能对比
序号 | 催化剂/助催化剂 | 反应条件 | 产率 /% | 参考 文献 |
---|---|---|---|---|
1① | ZrO2 | 150℃/5MPa/24h | 62.0 | [ |
2② | CA/TBAB | 25℃/1MPa/36h | 97.0 | [ |
3③ | CoTPP-PiP(Br) | 60℃/1MPa/24h | 95.0 | [ |
4④ | ER-7 | 100℃/2MPa/24h | 99.0 | [ |
5⑤ | Schiffbase ligands-Co complex | 120℃/0.1MPa/72h | 84.0 | [ |
6⑥ | Co-Phen-POP/TBAB | 25℃/1MPa/48h | 81.0 | [ |
7⑦ | CoPc/g-C3N4 | 130℃/3MPa/24h | 72.0 | [ |
8⑧ | u-g-C3N4-480 | 130℃/2MPa/24h | 99.0 | [ |
9⑨ | [OSSO]-Cr/TBAC | 45℃/1MPa/24h | 60.0 | [ |
10⑩ | MIL-101/TBAB | 25℃/1MPa/24h | 82.0 | [ |
11⑪ | SiO2@ZIF-67/TBAB | 80℃/2MPa/24h | 97.0 | [ |
12 | TA-Zr-2-FD/TBAI | 25℃/1MPa/24h | 97.6 | 本工作 |
1 | ZHOU Zhihao, SUN Zhenkun, DUAN Lunbo. Chemical looping: A flexible platform technology for CH4 conversion coupled with CO2 utilization[J]. Current Opinion in Green and Sustainable Chemistry, 2023, 39: 100721. |
2 | 张广宇, 赵健, 孙峰, 等. CO2催化转化制碳酸丙烯酯研究进展:催化剂设计、性能与反应机理[J]. 化工进展, 2022, 41(S1): 177-189. |
ZHANG Guangyu, ZHAO Jian, SUN Feng, et al. Research progress in catalytic conversion of CO2 to propylene carbonate: Catalyst design, performance and reaction mechanism[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 177-189. | |
3 | 郭立颖, 马秀云, 王立岩, 等. 氯化1-氨基聚醚-3-甲基咪唑离子液体的制备与催化性能[J]. 化工进展, 2017, 36(2): 581-587. |
GUO Liying, MA Xiuyun, WANG Liyan, et al. Preparation and catalytic properties of chloride 1-amino polyether-3-methyl imidazole ionic liquid[J]. Chemical Industry and Engineering Progress, 2017, 36(2): 581-587. | |
4 | CAI Sheng, ZHU Dongliang, ZOU Yan, et al. Porous polymers bearing functional quaternary ammonium salts as efficient solid catalysts for the fixation of CO2 into cyclic carbonates[J]. Nanoscale Research Letters, 2016, 11(1): 321. |
5 | XIE Yaqiang, SUN Qing, FU Yawen, et al. Sponge-like quaternary ammonium-based poly(ionic liquid)s for high CO2 capture and efficient cycloaddition under mild conditions[J]. Journal of Materials Chemistry A, 2017, 5(48): 25594-25600. |
6 | KIM Doyun, SUBRAMANIAN Saravanan, THIRION Damien, et al. Quaternary ammonium salt grafted nanoporous covalent organic polymer for atmospheric CO2 fixation and cyclic carbonate formation[J]. Catalysis Today, 2020, 356: 527-534. |
7 | AOYAGI Naoto, FURUSHO Yoshio, ENDO Takeshi. Effective synthesis of cyclic carbonates from carbon dioxide and epoxides by phosphonium iodides as catalysts in alcoholic solvents[J]. Tetrahedron Letters, 2013, 54(51): 7031-7034. |
8 | REN Yiping, SHIM Jae-Jin. Efficient synthesis of cyclic carbonates by MgⅡ/phosphine-catalyzed coupling reactions of carbon dioxide and epoxides[J]. ChemCatChem, 2013, 5(6): 1344-1349. |
9 | WANG Jinyuan, LIANG Yatao, ZHOU Dagang, et al. New crown ether complex cation ionic liquids with N-heterocycle anions: Preparation and application in CO2 fixation[J]. Organic Chemistry Frontiers, 2018, 5(5): 741-748. |
10 | JIANG Xu, GOU Faliang, CHEN Fengjuan, et al. Cycloaddition of epoxides and CO2 catalyzed by bisimidazole-functionalized porphyrin cobalt(Ⅲ) complexes[J]. Green Chemistry, 2016, 18(12): 3567-3576. |
11 | FU Hongchen, YOU Fei, LI Hongru, et al. CO2 capture and in situ catalytic transformation[J]. Frontiers in Chemistry, 2019, 7: 525. |
12 | CHEN Gang, ZHANG Jianling, CHENG Xiuyan, et al. Metal ionic liquids for the rapid chemical fixation of CO2 under ambient conditions[J]. ChemCatChem, 2020, 12(7): 1963-1967. |
13 | SODPIBAN Ounjit, PHUNGPANYA Chalida, DEL GOBBO Silvano, et al. Rational engineering of single-component heterogeneous catalysts based on abundant metal centers for the mild conversion of pure and impure CO2 to cyclic carbonates[J]. Chemical Engineering Journal, 2021, 422: 129930. |
14 | WANG Jinquan, ZHANG Yugen. Boronic acids as hydrogen bond donor catalysts for efficient conversion of CO2 into organic carbonate in water[J]. ACS Catalysis, 2016, 6(8): 4871-4876. |
15 | WANG Jinquan, DONG Kun, CHENG Weiguo, et al. Insights into quaternary ammonium salts-catalyzed fixation carbon dioxide with epoxides[J]. Catalysis Science & Technology, 2012, 2(7): 1480-1484. |
16 | KIM Jun, KIM Se-Na, JANG Hoi-Gu, et al. CO2 cycloaddition of styrene oxide over MOF catalysts[J]. Applied Catalysis A: General, 2013, 453: 175-180. |
17 | XU A H, CHEN Z J, JIN L J, et al. Quaternary ammonium salt functionalized MIL-101-NH2 (Cr) as a bifunctional catalyst for the cycloaddition of CO2 with epoxides to produce cyclic carbonates[J]. Applied Catalysis A: General, 2021, 624: 118307. |
18 | Sergio SOPEÑA, FIORANI Giulia, Carmen MARTÍN, et al. Highly efficient organocatalyzed conversion of oxiranes and CO2 into organic carbonates[J]. ChemSusChem, 2015, 8(19): 3248-3254. |
19 | SUN Jian, CHENG Weiguo, YANG Zifeng, et al. Superbase/cellulose: An environmentally benign catalyst for chemical fixation of carbon dioxide into cyclic carbonates[J]. Green Chemistry, 2014, 16(6): 3071-3078. |
20 | ALVES M, GRIGNARD B, GENNEN S, et al. Organocatalytic promoted coupling of carbon dioxide with epoxides: A rational investigation of the cocatalytic activity of various hydrogen bond donors[J]. Catalysis Science & Technology, 2015, 5(9): 4636-4643. |
21 | CLAVER Carmen, YEAMIN Md BIN, REGUERO Mar, et al. Recent advances in the use of catalysts based on natural products for the conversion of CO2 into cyclic carbonates[J]. Green Chemistry, 2020, 22(22): 7665-7706. |
22 | GUO Junling, PING Yuan, EJIMA Hirotaka, et al. Engineering multifunctional capsules through the assembly of metal-phenolic networks[J]. Angewandte Chemie (International Ed in English), 2014, 53(22): 5546-5551. |
23 | RAHIM Md Arifur, KRISTUFEK Samantha L, PAN Shuaijun, et al. Phenolic building blocks for the assembly of functional materials[J]. Angewandte Chemie (International Ed in English), 2019, 58(7): 1904-1927. |
24 | CHAND Santanu, Shyam Chand PAL, MONDAL Manas, et al. Three-dimensional Co( Ⅱ )-metal-organic frameworks with varying porosities and open metal sites toward multipurpose heterogeneous catalysis under mild conditions[J]. Crystal Growth & Design, 2019, 19(9): 5343-5353. |
25 | MAINA James W, Cristina POZO-GONZALO, KONG Lingxue, et al. Metal organic framework based catalysts for CO2 conversion[J]. Materials Horizons, 2017, 4(3): 345-361. |
26 | Hassan BEYZAVI M, STEPHENSON Casey J, LIU Yangyang, et al. Metal-organic framework-based catalysts: Chemical fixation of CO2 with epoxides leading to cyclic organic carbonates[J]. Frontiers in Energy Research, 2015, 2: 63. |
27 | XU Guangzhi, LIU Chen, HU Aiyun, et al. A novel synthesis of zirconium tannate with high stability: New insight into the structure of the catalyst for hydrogenation[J]. Applied Catalysis A: General, 2020, 602: 117666. |
28 | LENG Yan, SHI Langchen, DU Shengyu, et al. A tannin-derived zirconium-containing porous hybrid for efficient Meerwein-Ponndorf-Verley reduction under mild conditions[J]. Green Chemistry, 2020, 22(1): 180-186. |
29 | 刘军. 真空冷冻干燥法制备无机功能纳米粉体的研究[D]. 沈阳: 东北大学, 2006. |
LIU Jun. Study on synthesis of functionally inorganic nanopowder by vacuum freeze-drying[D].Shenyang: Northeastern University, 2006. | |
30 | VÁZQUEZ Maricela Santana, ESTEVEZ O, ASCENCIO-AGUIRRE F, et al. Tannic acid assisted synthesis of flake-like hydroxyapatite nanostructures at room temperature[J]. Applied Physics A, 2016, 122(9): 868. |
31 | KURISINGAL Jintu Francis, RACHURI Yadagiri, GU Yunjang, et al. Binary metal-organic frameworks: Catalysts for the efficient solvent-free CO2 fixation reaction via cyclic carbonates synthesis[J]. Applied Catalysis A: General, 2019, 571: 1-11. |
32 | GAO Jie, YUE Chengguang, WANG Hao, et al. CeO2-ZrO2 solid solution catalyzed and moderate acidic-basic sites dominated cycloaddition of CO2 with epoxides: Halogen-free synthesis of cyclic carbonates[J]. Catalysts, 2022, 12(6): 632. |
33 | AELENEI Neculai, POPA Marcel Ionel, NOVAC Ovidiu, et al. Tannic acid incorporation in chitosan-based microparticles and in vitro controlled release[J]. Journal of Materials Science Materials in Medicine, 2009, 20(5): 1095-1102. |
34 | DUTTA Anamika, DOLUI Swapan K. Tannic acid assisted one step synthesis route for stable colloidal dispersion of nickel nanostructures[J]. Applied Surface Science, 2011, 257(15): 6889-6896. |
35 | ZHANG Ruina, LI Lin, LIU Junxin. Synthesis and characterization of ferric tannate as a novel porous adsorptive-catalyst for nitrogen removal from wastewater[J]. RSC Advances, 2015, 5(51): 40785-40791. |
36 | ZHOU Shenghui, DAI Fanglin, CHEN Yian, et al. Sustainable hydrothermal self-assembly of hafnium-lignosulfonate nanohybrids for highly efficient reductive upgrading of 5-hydroxymethylfurfural[J]. Green Chemistry, 2019, 21(6): 1421-1431. |
37 | GENG Huimin, ZHONG Qizhi, LI Jianhua, et al. Metal ion-directed functional metal-phenolic materials[J]. Chemical Reviews, 2022, 122(13): 11432-11473. |
38 | MATTOS Bruno D, ZHU Ya, TARDY Blaise L, et al. Versatile assembly of metal-phenolic network foams enabled by tannin-cellulose nanofibers[J]. Advanced Materials, 2023, 35(12): e2209685. |
39 | TANG Bo, DAI Weili, SUN Xiaoming, et al. Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides[J]. Green Chemistry, 2015, 17(3): 1744-1755. |
40 | SONG Jinliang, ZHOU Baowen, ZHOU Huacong, et al. Porous zirconium-phytic acid hybrid: A highly efficient catalyst for meerwein-ponndorf-verley reductions[J]. Angewandte Chemie (International Ed in English), 2015, 54(32): 9399-9403. |
41 | WANG Hengrui, JIANG Yue, MA Zhewen, et al. Hypereplastic, robust, fire-safe multifunctional MXene aerogels with unprecedented electromagnetic interference shielding efficiency[J]. Advanced Functional Materials, 2023, 33(49): 2306884. |
42 | LEE Jonghwi, CHENG Yu. Critical freezing rate in freeze drying nanocrystal dispersions[J]. Journal of Controlled Release: Official Journal of the Controlled Release Society, 2006, 111(1/2): 185-192. |
43 | WANG Zixian, YAN Ting, GUO Li, et al. Synthesis of TBAB-based deep eutectic solvents as the catalyst in the coupling reaction between CO2 and epoxides under ambient temperature[J]. ChemistrySelect, 2022, 7(36): e202202091. |
44 | CHEN Yaju, LUO Rongchang, REN Qinggang, et al. Click-based porous ionic polymers with intercalated high-density metalloporphyrin for sustainable CO2 transformation[J]. Industrial & Engineering Chemistry Research, 2020, 59(46): 20269-20277. |
45 | LU Chenjie, ZHANG Yaoyao, ZHU Xiaofeng, et al. Simultaneous activation of carbon dioxide and epoxides to produce cyclic carbonates by cross-linked epoxy resin organocatalysts[J]. ChemCatChem, 2023, 15(10): e202300360. |
46 | KHATTAK Zafar A K, YOUNUS Hussein A, AHMAD Nazir, et al. Highly active dinuclear cobalt complexes for solvent-free cycloaddition of CO2 to epoxides at ambient pressure[J]. Chemical Communications, 2019, 55(57): 8274-8277. |
47 | ZHANG Xiaofeng, DING Junhao, QIU Bo, et al. Ultralow co loading phenanthroline-based porous organic polymer as a high-efficient heterogeneous catalyst for the fixation of CO2 to cyclic carbonates at ambient conditions[J]. ChemCatChem, 2021, 13(11): 2664-2673. |
48 | ZHANG Ting, WANG Xuefeng, HUANG Xueli, et al. Bifunctional catalyst of a metallophthalocyanine-carbon nitride hybrid for chemical fixation of CO2 to cyclic carbonate[J]. RSC Advances, 2016, 6(4): 2810-2818. |
49 | SU Qian, SUN Jian, WANG Jinquan, et al. Urea-derived graphitic carbon nitride as an efficient heterogeneous catalyst for CO2 conversion into cyclic carbonates[J]. Catalysis Science & Technology, 2014, 4(6): 1556-1562. |
50 | DELLA MONICA Francesco, PARADISO Veronica, GRASSI Alfonso, et al. A novel[OSSO]-type chromium(Ⅲ) complex as a versatile catalyst for copolymerization of carbon dioxide with epoxides[J]. Chemistry-A European Journal, 2020, 26(24): 5347-5353. |
51 | ZALOMAEVA Olga V, CHIBIRYAEV Andrey M, KOVALENKO Konstantin A, et al. Cyclic carbonates synthesis from epoxides and CO2 over metal-organic framework Cr-MIL-101[J]. Journal of Catalysis, 2013, 298: 179-185. |
52 | TSAI Chen-Yen, CHEN Yi-Hsuan, LEE Szetsen, et al. Uniform core-shell microspheres of SiO2@MOF for CO2 cycloaddition reactions[J]. Inorganic Chemistry, 2022, 61(6): 2724-2732. |
[1] | 刘方旺, 韩艺, 张佳佳, 步红红, 王兴鹏, 于传峰, 刘猛帅. CO2与环氧化物耦合制备环状碳酸酯的多相催化体系研究进展[J]. 化工进展, 2024, 43(3): 1252-1265. |
[2] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[3] | 罗志斌, 龙冉, 王小博, 裴爱国, 熊宇杰. 热增强的光催化二氧化碳还原技术[J]. 化工进展, 2021, 40(9): 5156-5165. |
[4] | 陈亚举, 任清刚, 周贤太, 纪红兵. 多孔有机聚合物催化二氧化碳合成环状碳酸酯研究进展[J]. 化工进展, 2021, 40(7): 3564-3583. |
[5] | 赵朝阳, 罗小燕, 裴宝有, 项小燕, 李佳然, 马瑞勋, 张子姮, 林金清. 多孔超交联聚合物固载离子液体催化二氧化碳环加成反应的研究进展[J]. 化工进展, 2021, 40(3): 1438-1448. |
[6] | 吴冰峰, 杨丽娜, 李剑, 白金. 生物质模板剂制备介孔材料研究进展[J]. 化工进展, 2018, 37(07): 2686-2693. |
[7] | 杨美, 钟向宏, 陈群. 离子液体催化二氧化碳合成环状碳酸酯的研究进展[J]. 化工进展, 2017, 36(09): 3300-3308. |
[8] | 潘登, 王亚明, 蒋丽红. 表面活性剂引导合成非硅基介孔材料的研究进展[J]. 化工进展, 2016, 35(08): 2500-2506. |
[9] | 李春喜,熊佳丽,孟洪,陆颖舟. 从ILs到PILs:聚合离子液体介孔材料的制备性质及结构调控方法[J]. 化工进展, 2014, 33(08): 1941-1950. |
[10] | 任瑞鹏 1,陈虎 1,陈健 2,吕永康 1. 应用催化氧化催化剂脱除烟气中NO的研究进展[J]. 化工进展, 2014, 33(06): 1453-1458. |
[11] | 李祥珍,王晓钟,刘 瑜,陈 伟,黄 璐. 介孔材料Al-SBA-15的合成研究进展[J]. 化工进展, 2013, 32(07): 1555-1563. |
[12] | 亢 宇,张明森,王洪涛,谢伦嘉,姜健准,郭 顺,邱 波,刘长城. 不同形貌介孔材料催化剂的制备及在乙烯聚合中的应用[J]. 化工进展, 2012, 31(05): 1032-1038. |
[13] | 王晓慧1,唐 梅1,贾金平2,孙同华2. 纳米氧化锌脱硫剂在硫化氢去除中的潜在应用 [J]. 化工进展, 2010, 29(9): 1760-. |
[14] | 许云强,周国伟,李艳敬,白光伟. 有序介孔材料作为药物控释载体的研究进展 [J]. 化工进展, 2010, 29(4): 677-. |
[15] | 郭翠梨,王小丽,张金利. 双介孔材料的合成与应用研究进展 [J]. 化工进展, 2010, 29(3): 490-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |