| 1 |
PARK Jae Hyun, YANG Jeongwoo, KIM Dohyeun, et al. Review of recent technologies for transforming carbon dioxide to carbon materials[J]. Chemical Engineering Journal, 2022, 427: 130980.
|
| 2 |
DURMAZ Tunç. The economics of CCS: Why have CCS technologies not had an international breakthrough?[J]. Renewable and Sustainable Energy Reviews, 2018, 95: 328-340.
|
| 3 |
TONG Dan, ZHANG Qiang, ZHENG Yixuan, et al. Committed emissions from existing energy infrastructure jeopardize 1.5℃ climate target[J]. Nature, 2019, 572(7769): 373-377.
|
| 4 |
LIU Yuanyuan, YANG Yanmei, SUN Qilong, et al. Chemical adsorption enhanced CO2 capture and photoreduction over a copper porphyrin based metal organic framework[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7654-7658.
|
| 5 |
LEUNG Dennis Y C, CARAMANNA Giorgio, Mercedes MAROTO-VALER M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39: 426-443.
|
| 6 |
DASHTI Hossein, ZHEHAO YEW Leonel, LOU Xia. Recent advances in gas hydrate-based CO2 capture[J]. Journal of Natural Gas Science and Engineering, 2015, 23: 195-207.
|
| 7 |
SHEN Minghai, TONG Lige, YIN Shaowu, et al. Cryogenic technology progress for CO2 capture under carbon neutrality goals: A review[J]. Separation and Purification Technology, 2022, 299: 121734.
|
| 8 |
HE Yan, WANG Fei. Hydrate-based CO2 capture: Kinetic improvement via graphene-carried-SO3 - and Ag nanoparticles[J]. Journal of Materials Chemistry A, 2018, 6(45): 22619-22625.
|
| 9 |
HASHEMI Shahrzad. Carbon dioxide hydrate formation in a three-phase slurry bubble column[D]. Ottawa: University of Ottawa (Canada), 2009.
|
| 10 |
LI Airong, JIANG Lele, TANG Siyao. An experimental study on carbon dioxide hydrate formation using a gas-inducing agitated reactor[J]. Energy, 2017, 134: 629-637.
|
| 11 |
安丽焕, 刘道平, 杨晓舒, 等. 雾流强化CO2水合物形成特性实验研究[J]. 制冷学报, 2016, 37(1): 84-89.
|
|
AN Lihuan, LIU Daoping, YANG Xiaoshu, et al. Experimental study on characteristics of CO2 hydrate formation in spray reactor[J]. Journal of Refrigeration, 2016, 37(1): 84-89.
|
| 12 |
孙始财, 刘玉峰, 吕爱钟, 等. 超声波与表面活性剂协同影响水合物诱导期[J]. 化工学报, 2006, 57(1): 160-162.
|
|
SUN Shicai, LIU Yufeng, Aizhong LYU, et al. Effect of ultrasonic and surfactant on induction time of natural gas hydrate[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(1): 160-162.
|
| 13 |
ZHANG Yongtao, CHEN Fulin, YU Shijie, et al. Biopromoters for gas hydrate formation: A mini review of current status[J]. Frontiers in Chemistry, 2020, 8: 514.
|
| 14 |
KHANDELWAL Himanshu, Fahed QURESHI M, ZHENG Junjie, et al. Effect of L-tryptophan in promoting the kinetics of carbon dioxide hydrate formation[J]. Energy & Fuels, 2021, 35(1): 649-658.
|
| 15 |
张银德,李延霞,李杨,等. L-色氨酸促进二氧化碳水合物生成特性实验研究[J].低碳化学与化工, 2023, 48(3):165-172.
|
|
ZHANG Yinde, LI Yanxia, LI Yang, et al. Experimental study on promotion effects of L-tryptophan on formation of carbon dioxide hydrate[J].Low-carbon Chemistry and Chemical Engineering,2023,48(3):165-172.
|
| 16 |
LIU Yao, CHEN Biyu, CHEN Yulong, et al. Methane storage in a hydrated form as promoted by leucines for possible application to natural gas transportation and storage[J]. Energy Technology, 2015, 3(8): 815-819.
|
| 17 |
CAI Yuanhao, CHEN Yulong, LI Qijie, et al. CO2 hydrate formation promoted by a natural amino acid L‐methionine for possible application to CO2 capture and storage[J]. Energy Technology, 2017, 5(8): 1195-1199.
|
| 18 |
ZHANG Yongtao, CHEN Fulin, HE Yan, et al. Enhanced CO2 hydrate formation via biopromoter coupled with initial stirring activation[J]. Fuel, 2022, 330: 125713.
|
| 19 |
康宇, 苟泽念. 氨基酸和DTAC对CO2 水合分离动力学影响[J]. 化工进展, 2023, 42(10): 5067-5075.
|
|
KANG Yu, GOU Zenian.Kinetics studies of carbon gas hydrate separation in the presence of amino acids and DTAC[J].Chemical Industry and Engineering Progress, 2023, 42(10): 5067-5075.
|
| 20 |
LIU Xuejian, REN Junjie, CHEN Daoyi, et al. Comparison of SDS and L-methionine in promoting CO2 hydrate kinetics: Implication for hydrate-based CO2 storage[J]. Chemical Engineering Journal, 2022, 438: 135504.
|
| 21 |
PARK Sung-Seek, LEE Sang-Baek, KIM Nam-Jin. Effect of multi-walled carbon nanotubes on methane hydrate formation[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(4): 551-555.
|
| 22 |
XIA Zhiming, LI Zeyu, CHEN Zhaoyang, et al. CO2/H2/H2O hydrate formation with TBAB and nanoporous materials[J]. Energy Procedia, 2019, 158: 5866-5871.
|
| 23 |
Saeid ABEDI-FARIZHENDI, Mahboubeh RAHMATI-ABKENAR, MANTEGHIAN Mehrdad, et al. Kinetic study of propane hydrate in the presence of carbon nanostructures and SDS[J].Journal of Petroleum Science and Engineering, 2019, 172:636-642.
|
| 24 |
盛淑美, 章冶, 李栋梁, 等. 多壁碳纳米管对CH4-CO2-TBAB水合物的促进作用[J]. 天然气化工(C1化学与化工), 2019, 44(1): 51-56.
|
|
SHENG Shumei, ZHANG Ye, LI Dongliang, et al. Promotion effect of multi-walled carbon nanotubes on CH4-CO2-TBAB hydrates formation[J]. Natural Gas Chemical Industry, 2019, 44(1): 51-56.
|
| 25 |
KIM Nam-Jin, PARK Sung-Seek, KIM Hyung Taek, et al. A comparative study on the enhanced formation of methane hydrate using CM-95 and CM-100 MWCNTs[J]. International Communications in Heat and Mass Transfer, 2011, 38(1): 31-36.
|
| 26 |
SONG Yuanmei, WANG Fei, LIU Guoqiang, et al. Promotion effect of carbon nanotubes-doped SDS on methane hydrate formation[J]. Energy & Fuels, 2017, 31(2): 1850-1857.
|
| 27 |
王英梅, 刘生浩, 滕亚栋, 等. NaCl 浓度对CO2水合物形成与稳定性的影响[J]. 化工进展, 2023, 42(11): 6093-6101.
|
|
WANG Yingmei, LIU Shenghao, TENG Yadong, et al. Effect of NaCl concentration on the formation and stability of CO2 hydrate[J].Chemical Industry and Engineering Progress, 2023, 42(11): 6093-6101.
|
| 28 |
SMITH J M, VAN NESS H C ABBOTT M M, et al. Introduction to chemical engineering thermodynamics[M]. 3d ed. New York: McGraw-Hill Education, 2018.
|
| 29 |
TULK C A, RIPMEESTER J A, KLUG D D. The application of Raman spectroscopy to the study of gas hydrates[J]. Annals of the New York Academy of Sciences, 2000, 912(1): 859-872.
|
| 30 |
蒋乐乐. 自吸式搅拌反应釜内强化CO2水合物生成实验研究[D]. 成都: 西南石油大学, 2017.
|
|
JIANG Lele. Experimental study on enhancing CO2 hydrate formation in self-priming stirred reactor[D]. Chengdu: Southwest Petroleum University, 2017.
|
| 31 |
LIU Yu, WANG Pengfei, YANG Mingjun, et al. CO2 sequestration in depleted methane hydrate sandy reservoirs[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 428-434.
|
| 32 |
JIANG Lanlan, XU Nan, LIU Qingbin, et al. Review of morphology studies on gas hydrate formation for hydrate-based technology[J]. Crystal Growth & Design, 2020, 20(12): 8148-8161.
|
| 33 |
VELUSWAMY Hari Prakash, HONG Qiwei, LINGA Praveen. Morphology study of methane hydrate formation and dissociation in the presence of amino acid[J]. Crystal Growth & Design, 2016, 16(10): 5932-5945.
|
| 34 |
WANG Fei, JIA Zhenzhen, LUO Shengjun, et al. Effects of different anionic surfactants on methane hydrate formation[J]. Chemical Engineering Science, 2015, 137: 896-903.
|
| 35 |
PANDEY Gaurav, VELUSWAMY Hari Prakash, SANGWAI Jitendra, et al. Morphology study of mixed methane-tetrahydrofuran hydrates with and without the presence of salt[J]. Energy & Fuels, 2019, 33(6): 4865-4876.
|
| 36 |
SAJADI A R, KAZEMI M H. Investigation of turbulent convective heat transfer and pressure drop of TiO2/water nanofluid in circular tube[J]. International Communications in Heat and Mass Transfer, 2011, 38(10): 1474-1478.
|
| 37 |
孙嘉颖, 谢应明, 徐政涛, 等. 纳米流体强化CO2水合物生成的研究进展[J]. 现代化工, 2019, 39(12): 26-30.
|
|
SUN Jiaying, XIE Yingming, XU Zhengtao, et al. Research progress in nanofluids-enhanced formation of CO2 hydrate[J]. Modern Chemical Industry, 2019, 39(12): 26-30.
|