化工进展 ›› 2024, Vol. 43 ›› Issue (12): 6723-6734.DOI: 10.16085/j.issn.1000-6613.2023-1957
• 工业催化 • 上一篇
潘晟昊1(), 陈伦刚2, 张兴华2, 张琦2, 马隆龙2, 刘建国2(
)
收稿日期:
2023-11-08
修回日期:
2024-03-17
出版日期:
2024-12-15
发布日期:
2025-01-11
通讯作者:
刘建国
作者简介:
潘晟昊(1996—),男,硕士研究生,研究方向为生物质平台化合物高效制备高值化学品的光、电催化体系。E-mail:220224612@seu.edu.cn。
基金资助:
PAN Shenghao1(), CHEN Lungang2, ZHANG Xinghua2, ZHANG Qi2, MA Longlong2, LIU Jianguo2(
)
Received:
2023-11-08
Revised:
2024-03-17
Online:
2024-12-15
Published:
2025-01-11
Contact:
LIU Jianguo
摘要:
近几十年,光催化的发展为能源的有效利用开辟了新的道路。基于光催化的转移氢化技术无需使用气态氢气、反应条件温和、能量来源清洁可持续、反应进程易控,有望用于新时代背景下的有机物选择性转化。本文综述了近年来光催化体系用于有机物选择性转移氢化的研究进展。首先,阐述了光催化转移氢化的原理。其次,从不同官能团选择性氢化的角度,梳理和归纳了不同光催化剂及其反应体系的研究成果,解释了典型催化体系的反应机理,介绍了新型的氢化体系和底物高值化的途径。最后,指出了光催化加氢仍存在反应速率及量子效率低、用于可见光的光催化剂较少、传统反应器不适用和使用耗电模拟光源等不足。对此,对光催化与电催化协同、开发新型光催化剂、设计适用于光催化的反应器及直接利用太阳能进行光催化等作出了展望。
中图分类号:
潘晟昊, 陈伦刚, 张兴华, 张琦, 马隆龙, 刘建国. 光催化用于有机物选择性转移氢化研究进展[J]. 化工进展, 2024, 43(12): 6723-6734.
PAN Shenghao, CHEN Lungang, ZHANG Xinghua, ZHANG Qi, MA Longlong, LIU Jianguo. Research progress on photocatalysis for selective transfer hydrogenation of organic compounds[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6723-6734.
催化剂 | 制备方法 | 价带/eV | 导带/eV | 带隙/eV | 光源波长/nm | 氢供体 | 参考文献 |
---|---|---|---|---|---|---|---|
Pt/TiO2 | 浸渍-光还原 | — | — | — | 365 | 异丙醇 | [ |
Pt/TiO2 | 浸渍-煅烧-氢气还原 | — | — | — | 365 | 甲醇 | [ |
Au/TiO2 | 浸渍-光还原 | — | — | — | 可见光 | 异丙醇 | [ |
Au/CuCo2O4 | 聚丙烯腈纤维为模板-沉淀-煅烧-光还原 | 2.66 | 1.30 | 1.36 | >420 | 异丙醇 | [ |
Co3O4/MgAl-LDH | 共沉淀-煅烧-水中搅拌 | 0.54 | -1.53 | 2.07 | 480~800 | 异丙醇 | [ |
Ov-WO3@CB[ | 两步煅烧-两步组装 | 2.25 | -0.5 | 2.75 | 415~425 | 氨硼烷 | [ |
AEROXIDE® P25 TiO2 | — | 2.5 | -0.7 | 3.2 | 紫外光 | 对甲氧基苯甲醇 | [ |
MIL-100(Fe0.63Al0.37) | 水热-真空加热 | 2.32 | -0.28 | 2.60 | ≥400 | 苯甲醇 | [ |
表 1 用于C̿ O键选择性氢化的光催化剂及反应体系汇总
催化剂 | 制备方法 | 价带/eV | 导带/eV | 带隙/eV | 光源波长/nm | 氢供体 | 参考文献 |
---|---|---|---|---|---|---|---|
Pt/TiO2 | 浸渍-光还原 | — | — | — | 365 | 异丙醇 | [ |
Pt/TiO2 | 浸渍-煅烧-氢气还原 | — | — | — | 365 | 甲醇 | [ |
Au/TiO2 | 浸渍-光还原 | — | — | — | 可见光 | 异丙醇 | [ |
Au/CuCo2O4 | 聚丙烯腈纤维为模板-沉淀-煅烧-光还原 | 2.66 | 1.30 | 1.36 | >420 | 异丙醇 | [ |
Co3O4/MgAl-LDH | 共沉淀-煅烧-水中搅拌 | 0.54 | -1.53 | 2.07 | 480~800 | 异丙醇 | [ |
Ov-WO3@CB[ | 两步煅烧-两步组装 | 2.25 | -0.5 | 2.75 | 415~425 | 氨硼烷 | [ |
AEROXIDE® P25 TiO2 | — | 2.5 | -0.7 | 3.2 | 紫外光 | 对甲氧基苯甲醇 | [ |
MIL-100(Fe0.63Al0.37) | 水热-真空加热 | 2.32 | -0.28 | 2.60 | ≥400 | 苯甲醇 | [ |
催化剂 | 制备方法 | 光源波长/nm | 氢供体 | 参考文献 |
---|---|---|---|---|
Pt/TiO2 | 浸渍-光还原 | 385 | 甲醇 | [ |
Ni/C3N4 | 热聚合-浸渍-还原 | 420 | 甲醇 | [ |
BCN+NiP | 煅烧+原位生成 | 455 | 甲醇/水溶液 | [ |
CoTPPS+[Ru(bpy)3]2+ | — | 450 | 水 | [ |
表 2 用于C≡≡C键选择性氢化的光催化剂及反应体系汇总
催化剂 | 制备方法 | 光源波长/nm | 氢供体 | 参考文献 |
---|---|---|---|---|
Pt/TiO2 | 浸渍-光还原 | 385 | 甲醇 | [ |
Ni/C3N4 | 热聚合-浸渍-还原 | 420 | 甲醇 | [ |
BCN+NiP | 煅烧+原位生成 | 455 | 甲醇/水溶液 | [ |
CoTPPS+[Ru(bpy)3]2+ | — | 450 | 水 | [ |
催化剂 | 制备方法 | 价带/eV | 导带/eV | 带隙/eV | 光源波长/nm | 氢供体 | 参考文献 |
---|---|---|---|---|---|---|---|
P25 | HF处理 | — | — | 3.15 | >300 | 异丙醇 | [ |
TiO2@N-AC | 浸渍-两次煅烧-硝酸处理 | — | — | — | 可见光 | 异丙醇 | [ |
TiO2-Pd NO | 水热-浸渍 | — | — | — | 365±15 | 乙醇 | [ |
Pt/BMO-NS | 水热-光还原 | — | — | 2.56 | >400 | 醋酸铵 | [ |
Pd/MIL-101(Fe)-2MI(300) | 水热-光还原-热处理 | — | — | 2.22 | 蓝光 | 苯甲醇 | [ |
sPS/P25 | 凝胶法 | — | — | — | 365 | 乙醇 | [ |
g-C3N4 | 热沉积 | 1.3 | -1.4 | 2.7 | 可见光 | 肼 | [ |
CuFeS2 NCs | 共沉淀 | — | — | — | 400~500 | 肼 | [ |
Ce-Ga-Zn(O,S) | 共沉淀 | — | — | 3.5 | 紫外光 | 水 | [ |
Pd/KPCN | 水热-光还原 | 1.68 | -1.05 | 2.73 | 420~780 | 水 | [ |
表 3 用于硝基苯选择性氢化的光催化剂及反应体系汇总
催化剂 | 制备方法 | 价带/eV | 导带/eV | 带隙/eV | 光源波长/nm | 氢供体 | 参考文献 |
---|---|---|---|---|---|---|---|
P25 | HF处理 | — | — | 3.15 | >300 | 异丙醇 | [ |
TiO2@N-AC | 浸渍-两次煅烧-硝酸处理 | — | — | — | 可见光 | 异丙醇 | [ |
TiO2-Pd NO | 水热-浸渍 | — | — | — | 365±15 | 乙醇 | [ |
Pt/BMO-NS | 水热-光还原 | — | — | 2.56 | >400 | 醋酸铵 | [ |
Pd/MIL-101(Fe)-2MI(300) | 水热-光还原-热处理 | — | — | 2.22 | 蓝光 | 苯甲醇 | [ |
sPS/P25 | 凝胶法 | — | — | — | 365 | 乙醇 | [ |
g-C3N4 | 热沉积 | 1.3 | -1.4 | 2.7 | 可见光 | 肼 | [ |
CuFeS2 NCs | 共沉淀 | — | — | — | 400~500 | 肼 | [ |
Ce-Ga-Zn(O,S) | 共沉淀 | — | — | 3.5 | 紫外光 | 水 | [ |
Pd/KPCN | 水热-光还原 | 1.68 | -1.05 | 2.73 | 420~780 | 水 | [ |
1 | 吕建中. 欧洲能源危机的启示与思考[J]. 世界石油工业, 2022, 29(1): 2-7. |
Jianzhong LYU. Inspiration and reflection of European energy crisis[J]. World Petroleum Industry, 2022, 29(1): 2-7. | |
2 | 郝宇. 欧洲能源危机的根源与影响[J]. 人民论坛, 2022(7): 102-105. |
HAO Yu. The source and influence of European energy crisis[J]. People’s Tribune, 2022(7): 102-105. | |
3 | WANG Huan, SHI Yingzhang, WANG Zhiwen, et al. Selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde over Au-Pd/ultrathin SnNb2O6 nanosheets under visible light[J]. Journal of Catalysis, 2021, 396: 374-386. |
4 | HUANG Binbin, SUN Zemin, SUN Genban. Recent progress in cathodic reduction-enabled organic electrosynthesis: Trends, challenges, and opportunities[J]. eScience, 2022, 2(3): 243-277. |
5 | GUO Mengya, ZHANG Mingwei, LIU Runze, et al. State-of-the-art advancements in photocatalytic hydrogenation: Reaction mechanism and recent progress in metal-organic framework (MOF)-based catalysts[J]. Advanced Science, 2022, 9(1): e2103361. |
6 | MA Dongge, ZHAI Shan, WANG Yi, et al. TiO2 photocatalysis for transfer hydrogenation[J]. Molecules, 2019, 24(2): 330. |
7 | GUO Xiaoning, JIAO Zhifeng, JIN Guoqiang, et al. Photocatalytic Fischer-Tropsch synthesis on graphene-supported worm-like ruthenium nanostructures[J]. ACS Catalysis, 2015, 5(6): 3836-3840. |
8 | ZHANG Yu, YU Weiwei, CAO Shuo, et al. Photocatalytic chemoselective transfer hydrogenation of quinolines to tetrahydroquinolines on hierarchical NiO/In2O3-CdS microspheres[J]. ACS Catalysis, 2021, 11(21): 13408-13415. |
9 | ZHAO Ziyan, DORONKIN Dmitry E, YE Yinghao, et al. Visible light-enhanced photothermal CO2 hydrogenation over Pt/Al2O3 catalyst[J]. Chinese Journal of Catalysis, 2020, 41(2): 286-293. |
10 | Sara NAVARRO-JAÉN, VIRGINIE Mirella, BONIN Julien, et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol[J]. Nature Reviews Chemistry, 2021, 5(8): 564-579. |
11 | WANG Yuanshen, ZHAO Yufei, LIU Jinjia, et al. Manganese oxide modified nickel catalysts for photothermal CO hydrogenation to light olefins[J]. Advanced Energy Materials, 2020, 10(5): 1902860. |
12 | WEI Longfu, YU Changlin, YANG Kai, et al. Recent advances in VOCs and CO removal via photothermal synergistic catalysis[J]. Chinese Journal of Catalysis, 2021, 42(7): 1078-1095. |
13 | SHAHZAD SHIRAZI Maryam, FOROUMADI Alireza, SABERIKIA Iraj, et al. Very rapid synthesis of highly efficient and biocompatible Ag2Se QD phytocatalysts using ultrasonic irradiation for aqueous/sustainable reduction of toxic nitroarenes to anilines with excellent yield/selectivity at room temperature[J]. Ultrasonics Sonochemistry, 2022, 87: 106037. |
14 | SPASIANO Danilo, MAROTTA Raffaele, MALATO Sixto, et al. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach[J]. Applied Catalysis B: Environmental, 2015, 170: 90-123. |
15 | MICHELIN Clément, HOFFMANN Norbert. Photosensitization and photocatalysis—Perspectives in organic synthesis[J]. ACS Catalysis, 2018, 8(12): 12046-12055. |
16 | MA Yating, LI Zhaohui. Coupling plasmonic noble metal with TiO2 for efficient photocatalytic transfer hydrogenation: M/TiO2 (M = Au and Pt) for chemoselective transformation of cinnamaldehyde to cinnamyl alcohol under visible and 365nm UV light[J]. Applied Surface Science, 2018, 452: 279-285. |
17 | ZHANG Tianyong, YOU Lanying, ZHANG Youlan. Photocatalytic reduction of p-chloronitrobenzene on illuminated nano-titanium dioxide particles[J]. Dyes and Pigments, 2006, 68(2/3): 95-100. |
18 | YILDIZ Zehra I, KILIC Mehmet E, DURGUN Engin, et al. Molecular encapsulation of cinnamaldehyde within cyclodextrin inclusion complex electrospun nanofibers: Fast-dissolution, enhanced water solubility, high temperature stability, and antibacterial activity of cinnamaldehyde[J]. Journal of Agricultural and Food Chemistry, 2019, 67(40): 11066-11076. |
19 | BASYACH Purashri, SAIKIA Lakshi. Magnetic nanoparticles supported on g-C3N4: An efficient heterogeneous catalyst for selective transfer hydrogenation of furfural to furfuryl alcohol[J]. ChemistrySelect, 2022, 7(19): e202200355. |
20 | SHI Yingzhang, WANG Huan, WANG Zhiwen, et al. Surface functionalized Pt/SnNb2O6 nanosheets for visible-light-driven the precise hydrogenation of furfural to furfuryl alcohol[J]. Journal of Energy Chemistry, 2022, 66: 566-575. |
21 | Andrew S MAY, BIDDINGER Elizabeth J. Strategies to control electrochemical hydrogenation and hydrogenolysis of furfural and minimize undesired side reactions[J]. ACS Catalysis, 2020, 10(5): 3212-3221. |
22 | SHI Yingzhang, WU Taikang, WANG Zhiwen, et al. Photocatalytic precise hydrogenation of furfural over ultrathin Pt/NiMg-MOF-74 nanosheets: Synergistic effect of surface optimized NiⅡ sites and Pt clusters[J]. Applied Surface Science, 2023, 616: 156553. |
23 | ZHANG Qianqian, SUN Yifan, LI Wei, et al. Highly selective electrocatalytic hydrogenation of cinnamaldehyde over tin dioxide-supported palladium nanocatalysts[J]. International Journal of Hydrogen Energy, 2022, 47(90): 38229-38241. |
24 | GUO Mengya, DU Yuzhe, ZHANG Mingwei, et al. Breaking the activity-selectivity trade-off of Pt nanoparticles encapsulated in UiO-66 for hydrogenation by constructing suitable hierarchical structure[J]. ACS Sustainable Chemistry & Engineering, 2022, 10(23): 7485-7499. |
25 | Shuang LYU, LIU Huifang, ZHANG Jian, et al. Water promoted photocatalytic transfer hydrogenation of furfural to furfural alcohol over ultralow loading metal supported on TiO2 [J]. Journal of Energy Chemistry, 2022, 73: 259-267. |
26 | HU Guowen, HUANG Zhipeng, HU Chenxia, et al. Selective photocatalytic hydrogenation of α,β-unsaturated aldehydes on Au/CuCo2O4 nanotubes under visible-light irradiation[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(22): 8288-8294. |
27 | ZHANG Jin, GAO Mengting, ZHU Pengqi, et al. Photocatalytic selective hydrogenation of α,β-unsaturated aldehydes over oxygen vacancies enriched layered double hydroxide supported Co3O4 nanoparticles photocatalyst[J]. Fuel, 2022, 330: 125589. |
28 | MENG Ye, JIAN Yumei, LI Jie, et al. Surface-active site engineering: Synergy of photo- and supermolecular catalysis in hydrogen transfer enables biomass upgrading and H2 evolution[J]. Chemical Engineering Journal, 2023, 452: 139477. |
29 | JARYAL Arpna, RAO Battula Venugopala, KAILASAM Kamalakannan. A Light(er) approach for the selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan without external H2 [J]. ChemSusChem, 2022, 15(13): e202200430. |
30 | KANG Yueyue, WANG Zhiwen, SHI Yingzhang, et al. Synthesis of aluminum doped MIL-100(Fe) compounds for the one-pot photocatalytic conversion of cinnamaldehyde and benzyl alcohol to the corresponding alcohol and aldehyde under anaerobic conditions[J]. Journal of Catalysis, 2022, 406: 184-192. |
31 | CHENG Lei, ZHANG Peng, WEN Qiye, et al. Copper and platinum dual-single-atoms supported on crystalline graphitic carbon nitride for enhanced photocatalytic CO2 reduction[J]. Chinese Journal of Catalysis, 2022, 43(2): 451-460. |
32 | YU Senshen, ZHANG Shiding, LI Kunning, et al. Furfuryl alcohol production with high selectivity by a novel visible-light driven biocatalysis process[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(42): 15980-15988. |
33 | LI Peng, WANG Bin, CHEN Xi, et al. Design, synthesis and biological evaluation of alkynyl-containing maleimide derivatives for the treatment of drug-resistant tuberculosis[J]. Bioorganic Chemistry, 2023, 131: 106250. |
34 | XIE Yazhou, CHEN Chen, LIN Shujing, et al. Design, synthesis and anti-AD effects of dual inhibitor targeting glutaminyl cyclase/GSK-3β[J]. European Journal of Medicinal Chemistry, 2023, 248: 115089. |
35 | MANLEY David W, BUZZETTI Luca, Andrew MACKESSACK-LEITCH, et al. Hydrogenations without hydrogen: Titania photocatalyzed reductions of maleimides and aldehydes[J]. Molecules, 2014, 19(9): 15324-15338. |
36 | WEI Qichen, CHEN Ya, WANG Zhao, et al. Light-assisted semi-hydrogenation of 1,3-butadiene with water[J]. Angewandte Chemie International Edition, 2022, 61(38): e202210573. |
37 | ZHANG Cancan, LI Yonglong, HU Yanfang, et al. Light inhibition of hydrogenation reactions on Au-Pd nanocoronals as plasmonic switcher in catalysis[J]. Chemical Communications, 2023, 59(19): 2799-2802. |
38 | SWEARER Dayue F, BOURGEOIS Briley B, ANGELL Daniel K, et al. Advancing plasmon-induced selectivity in chemical transformations with optically coupled transmission electron microscopy[J]. Accounts of Chemical Research, 2021, 54(19): 3632-3642. |
39 | WANG Jie, WANG Mengxia, LI Xincheng, et al. Bidentate ligand modification strategy on supported Ni nanoparticles for photocatalytic selective hydrogenation of alkynes[J]. Applied Catalysis B: Environmental, 2022, 313: 121449. |
40 | SHITTU Toyin, KHALEEL Abbas, POLYCHRONOPOULOU Kyriaki, et al. Functionalized ceria-niobium supported nickel catalysts for gas phase semi-hydrogenation of phenylacetylene to styrene[J]. Catalysis Science & Technology, 2022, 12(23): 7133-7150. |
41 | LIAN Juhong, CHAI Yuchao, QI Yu, et al. Unexpectedly selective hydrogenation of phenylacetylene to styrene on titania supported platinum photocatalyst under 385nm monochromatic light irradiation[J]. Chinese Journal of Catalysis, 2020, 41(4): 598-603. |
42 | JIA Tongtong, MENG Di, JI Hongwei, et al. Visible-light-driven semihydrogenation of alkynes via proton reduction over carbon nitride supported nickel[J]. Applied Catalysis B: Environmental, 2022, 304: 121004. |
43 | YUAN Tao, HUAN Shuwen, GE Bingqing, et al. Semi-hydrogenation of alkynes by a tandem photoredox system free of noble metal[J]. CCS Chemistry, 2022, 4(8): 2597-2603. |
44 | ARCUDI Francesca, Luka ÐORĐEVIĆ, SCHWEITZER Neil, et al. Selective visible-light photocatalysis of acetylene to ethylene using a cobalt molecular catalyst and water as a proton source[J]. Nature Chemistry, 2022, 14(9): 1007-1012. |
45 | CASADEVALL Carla, PASCUAL David, Jordi ARAGÓN, et al. Light-driven reduction of aromatic olefins in aqueous media catalysed by aminopyridine cobalt complexes[J]. Chemical Science, 2022, 13(15): 4270-4282. |
46 | SHIRAISHI Yasuhiro, HIRAKAWA Hiroaki, TOGAWA Yoshiki, et al. Rutile crystallites isolated from degussa (evonik) P25 TiO2: Highly efficient photocatalyst for chemoselective hydrogenation of nitroaromatics[J]. ACS Catalysis, 2013, 3(10): 2318-2326. |
47 | XU Shaodan, TANG Junhong, ZHOU Qingwei, et al. Interfacing anatase with carbon layers for photocatalytic nitroarene hydrogenation[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16190-16199. |
48 | LU Suwei, WENG Bo, CHEN Aizhu, et al. Facet engineering of Pd nanocrystals for enhancing photocatalytic hydrogenation: Modulation of the Schottky barrier height and enrichment of surface reactants[J]. ACS Applied Materials & Interfaces, 2021, 13(11): 13044-13054. |
49 | SHI Yingzhang, WANG Zhiwen, LIU Cheng, et al. Surface synergetic effects of Pt clusters/monolayer Bi2MoO6 nanosheet for promoting the photocatalytic selective reduction of 4-nitrostyrene to 4-vinylaniline[J]. Applied Catalysis B: Environmental, 2022, 304: 121010. |
50 | CHENG Hongmei, LONG Xingyu, BIAN Fengxia, et al. Efficient photocatalytic one-pot hydrogenation and N-alkylation of nitrobenzenes/benzonitriles with alcohols over Pd/MOFs: Effect of the crystal morphology & “quasi-MOF” structure[J]. Journal of Catalysis, 2020, 389: 121-131. |
51 | NAVARRA Wanda, SACCO Olga, VENDITTO Vincenzo, et al. Selective photocatalytic reduction of nitrobenzene to aniline using TiO2 embedded in sPS aerogel[J]. Polymers, 2023, 15(2): 359. |
52 | XIAO Gang, LI Peifeng, ZHAO Yilin, et al. Visible-light-driven chemoselective hydrogenation of nitroarenes to anilines in water through graphitic carbon nitride metal-free photocatalysis[J]. Chemistry— An Asian Journal, 2018, 13(15): 1950-1955. |
53 | POULOSE Aby Cheruvathoor, ZOPPELLARO Giorgio, KONIDAKIS Ioannis, et al. Fast and selective reduction of nitroarenes under visible light with an earth-abundant plasmonic photocatalyst[J]. Nature Nanotechnology, 2022, 17(5): 485-492. |
54 | SISAY Girma, ABDULLAH Hairus, KUO Dong-Hau, et al. Zn-Ce-Ga trimetal oxysulfide as a dual-functional catalyst: Hydrogen evolution and hydrogenation reactions in a mild condition[J]. Applied Surface Science, 2021, 563: 150383. |
55 | XU Yangsen, ZHANG Zhaofei, QIU Chuntian, et al. Photocatalytic water-splitting coupled with alkanol oxidation for selective N-alkylation reactions over carbon nitride[J]. ChemSusChem, 2021, 14(2): 582-589. |
56 | SHARMA Priti, MUKHERJEE Debdyuti, SARKAR Sujoy, et al. Pd doped carbon nitride (Pd-g-C3N4): An efficient photocatalyst for hydrogenation via an Al-H2O system and an electrocatalyst towards overall water splitting[J]. Green Chemistry, 2022, 24(14): 5535-5546. |
57 | PEI Linjuan, TAN Hao, LIU Meixian, et al. Hydroxyl-group-modified polymeric carbon nitride with the highly selective hydrogenation of nitrobenzene to N-phenylhydroxylamine under visible light[J]. Green Chemistry, 2021, 23(10): 3612-3622. |
58 | MENG Di, ZHU Qian, WEI Yan, et al. Light-driven activation of carbon-halogen bonds by readily available amines for photocatalytic hydrodehalogenation[J]. Chinese Journal of Catalysis, 2020, 41(10): 1474-1479. |
59 | LING Xiang, XU Yangsen, WU Shaoping, et al. A visible-light-photocatalytic water-splitting strategy for sustainable hydrogenation/deuteration of aryl chlorides[J]. Science China Chemistry, 2020, 63(3): 386-392. |
60 | GUO Yinggang, AN Wankai, TIAN Xinzhe, et al. Coupling photocatalytic overall water splitting with hydrogenation of organic molecules: A strategy for using water as a hydrogen source and an electron donor to enable hydrogenation[J]. Green Chemistry, 2022, 24(23): 9211-9219. |
61 | SUN Guangping, CAI Lijuan, CUI Huihui, et al. Naphthalenyl-phenylacrylonitrile-based supramolecular aqueous artificial light-harvesting system for photochemical catalysis[J]. Dyes and Pigments, 2022, 201: 110257. |
62 | SHANBHAG Anirudh P. Stairway to stereoisomers: Engineering short and medium-chain ketoreductases for producing chiral alcohols[J]. ChemBioChem: A European Journal of Chemical Biology, 2023, 24(6): e202200687. |
63 | KOHTANI Shigeru, KAWASHIMA Akira, MASUDA Fumie, et al. Chiral α-hydroxy acid-coadsorbed TiO2 photocatalysts for asymmetric induction in hydrogenation of aromatic ketones[J]. Chemical Communications, 2018, 54(89): 12610-12613. |
64 | YIN Youcheng, WANG Ru, ZHANG Jing, et al. Efficiently enantioselective hydrogenation photosynthesis of (R)-1-[3,5-bis(trifluoromethyl)phenyl] ethanol over a CLEs-TiO2 bioinorganic hybrid materials[J]. ACS Applied Materials & Interfaces, 2021, 13(35): 41454-41463. |
65 | TANG Daobin, LIU Jianguo, ZHANG Xinghua, et al. Sacrifice and valorization of biomass to realize energy exploitation and transformation in a photoelectrochemical way[J]. Green Chemistry, 2023, 25(20): 7843-7862. |
66 | TIAN Xianhai, KARL Tobias A, REITER Sebastian, et al. Electro-mediated PhotoRedox catalysis for selective C(sp3) —O cleavages of phosphinated alcohols to carbanions[J]. Angewandte Chemie International Edition, 2021, 60(38): 20817-20825. |
67 | CHERNOWSKY Colleen P, CHMIEL Alyah F, WICKENS Zachary K. Electrochemical activation of diverse conventional photoredox catalysts induces potent photoreductant activity[J]. Angewandte Chemie International Edition, 2021, 60(39): 21418-21425. |
[1] | 熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304. |
[2] | 宋财城, 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 碳基载体负载加氢脱硫催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 305-314. |
[3] | 韩洪晶, 车宇, 田宇轩, 王海英, 张亚男, 陈彦广. 木质素催化氢解催化剂及溶剂的研究进展[J]. 化工进展, 2024, 43(S1): 315-324. |
[4] | 胡兴, 刘易, 杜泽学. 3-氯丙烯直接合成环氧氯丙烷催化剂研究进展[J]. 化工进展, 2024, 43(S1): 325-334. |
[5] | 于梦洁, 吴语童, 罗发祥, 豆义波. 低浓度二氧化碳还原光催化剂结构设计的研究进展[J]. 化工进展, 2024, 43(S1): 335-350. |
[6] | 张浩, 刘世钰, 沈卫华, 方云进. Ca-ZSM-5催化尿素脱水制备单氰胺[J]. 化工进展, 2024, 43(S1): 365-373. |
[7] | 何世坤, 张荣花, 李昊阳, 潘晖, 冯君锋. 脱铝分子筛固体酸催化葡萄糖制备5-羟甲基糠醛[J]. 化工进展, 2024, 43(S1): 374-381. |
[8] | 张日东, 吕建华, 刘继东, 郭豹, 李文松. Ru-K-NaY催化草酸二甲酯脱羰基制备碳酸二甲酯[J]. 化工进展, 2024, 43(S1): 382-390. |
[9] | 王于华, 周雪, 谷传涛. 用于高性能全聚合物太阳能电池的区域规整的聚小分子受体研究进展[J]. 化工进展, 2024, 43(S1): 391-402. |
[10] | 高聪志, 张雅萱, 林璐, 邓晓婷, 殷霞, 丁一刚, 肖艳华, 杜治平. 新戊二醇的合成工艺[J]. 化工进展, 2024, 43(S1): 469-478. |
[11] | 万震, 王绍庆, 李志合, 赵天生. HZSM-5分子筛催化木质素热解制芳烃研究进展[J]. 化工进展, 2024, 43(S1): 517-532. |
[12] | 李琳, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王春霞, 王俊莲, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 铝基废催化剂载体的回收与再生制备[J]. 化工进展, 2024, 43(S1): 640-649. |
[13] | 李新月, 李振京, 韩沂杭, 郭永强, 闫瑜, 哈力米热·卡热木拉提, 赵会吉, 柴永明, 刘东, 殷长龙. 油脂加氢脱氧生产绿色柴油催化剂的研究进展[J]. 化工进展, 2024, 43(S1): 351-364. |
[14] | 王月, 张学瑞, 宋玺文, 陈渤燕, 李庆勋, 钟海军, 胡孝伟, 何帅. 电解制氢合成氨技术综述与展望[J]. 化工进展, 2024, 43(S1): 180-188. |
[15] | 林梅洁, 米烁东, 包成. 金属-掺杂氧化铈体系H2/CO电化学反应机理研究进展[J]. 化工进展, 2024, 43(S1): 209-224. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |