化工进展 ›› 2024, Vol. 43 ›› Issue (11): 6543-6552.DOI: 10.16085/j.issn.1000-6613.2023-1861

• 资源与环境化工 • 上一篇    

玄武岩石粉强化MEA溶液捕集CO2

陈琳琳1(), 张磊2, 张春金1, 唐华1, 陈思铭3()   

  1. 1.青岛大学环境科学与工程学院,山东 青岛 266075
    2.中国特种设备检测研究院,北京 100026
    3.中国矿业大学碳中和研究院,江苏 徐州 221008
  • 收稿日期:2023-10-23 修回日期:2023-12-28 出版日期:2024-11-15 发布日期:2024-12-07
  • 通讯作者: 陈思铭
  • 作者简介:陈琳琳(1998—),女,硕士研究生,研究方向为CO2捕集与转化。E-mail:chenlinlin0305@163.com
  • 基金资助:
    2023年度徐州市推动科技创新专项基金重点研发计划(ZYSI20230041);中国博士后科学基金第74批面上项目(2023M743768);国家自然科学基金(52006112)

Basalt toward energy-efficient CO2 capture by MEA solution

CHEN Linlin1(), ZHANG Lei2, ZHANG Chunjin1, TANG Hua1, CHEN Siming3()   

  1. 1.School of Environmental Science and Engineering, Qingdao University, Qingdao 266075, Shandong, China
    2.China Special Equipment Inspection and Research Institute, Beijing 100026, China
    3.Institute of Carbon Neutralization, School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China
  • Received:2023-10-23 Revised:2023-12-28 Online:2024-11-15 Published:2024-12-07
  • Contact: CHEN Siming

摘要:

单乙醇胺(MEA)作为CO2吸收剂已被广泛用于烟气CO2捕集,但是高CO2再生能耗给该技术的大规模发展带来了巨大的经济挑战。向吸收剂中添加固体催化剂可降低再生反应能垒,提高CO2解吸速率,最终实现在较低温度下的快速解吸。本文采用天然矿物质——玄武岩石粉作为催化剂强化MEA溶液捕集CO2性能。首先对比了添加玄武岩与空白MEA溶液的CO2捕集性能差异;接着采用X射线衍射、X射线光电子能谱、傅里叶红外、氮气物理吸附、吡啶红外、氨气程序升温脱附等表征技术探究了玄武岩催化反应过程的物化性质;最终,提出了玄武岩催化反应机理。实验结果表明,玄武岩石粉表面存在Brønsted酸位、Lewis酸位和Lewis碱位,具有提供质子和接受电子的能力。100℃条件下,与空白实验相比,其CO2循环吸收容量提高了5.0%,CO2解吸速率最大提高76.5%,显热降低11.9%。因此,玄武岩石粉可作为CO2解吸催化剂用于强化MEA溶液捕集CO2性能。

关键词: 二氧化碳, 玄武岩, 吸收-解吸, 能耗, 催化

Abstract:

Monoethanolamine (MEA) has been widely used as a CO2 absorbent in flue gas CO2 capture, but the high energy consumption of CO2 regeneration has brought huge economic challenges to the large-scale development of this technology. Adding a solid catalyst to the absorbent can reduce the energy barrier of the regeneration reaction and increase the CO2 desorption rate, ultimately achieving rapid desorption at lower temperatures. This paper used natural mineral nano basalt as a catalyst to enhance the CO2 capture performance of MEA solution. Firstly, the differences of CO2 absorption and desorption performances between the addition of basalt and the blank experiment were compared. Then the physical and chemical properties of the basalt catalytic reaction process were explored using characterization techniques such as X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform-Infrared Spectroscopy (FTIR), N2 Temperature-Programmed Desorption (N2-TPD), Pyridine Adsorption-Infrared Spectrometry (Py-IR), and NH3 Temperature-Programmed Desorption (NH3-TPD). Finally, the catalytic mechanism of basalt in the MEA solution was proposed. The experimental results showed that basalt rock powder had the ability to provide protons and accept electrons with the presence of Brønsted acid sites, Lewis acid sites and Lewis base sites on its surface. Under 100℃ conditions, compared with the blank experiment, its CO2 cyclic absorption capacity increased by 5.0%, CO2 desorption rate increased by 76.5%, and sensible heat decreased by 11.9%. Therefore, basalt rock powder can be used as a composite catalyst for CO2 capture improvement in MEA solution.

Key words: carbon dioxide, basalt, absorption-desorption, energy consumption, catalyst

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn