1 |
ALIVAND Masood S, MAZAHERI Omid, WU Yue, et al. Catalytic solvent regeneration for energy-efficient CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(51): 18755-18788.
|
2 |
朱玲玲, 朱伟, 贾庆, 等. 浅谈“双碳”背景下的二氧化碳捕集利用与封存[J]. 中国水泥, 2022(6): 17-20.
|
|
ZHU Lingling, ZHU Wei, JIA Qing, et al. On the capture, utilization and storage of carbon dioxide under the background of “double carbon” [J]. China Cement, 2022(6): 17-20.
|
3 |
YU Bing, LI Lichun, YU Hai, et al. Insights into the chemical mechanism for CO2(aq) and H+ in aqueous diamine solutions-an experimental stopped-flow kinetic and 1H/13C NMR study of aqueous solutions of N, N-dimethylethylenediamine for postcombustion CO2 capture[J]. Environmental Science & Technology, 2018, 52(2): 916-926.
|
4 |
NAKAGAKI Takao, YAMABE Ryutaro, FURUKAWA Yukio, et al. Experimental evaluation of temperature and concentration effects on heat of dissociation of CO2-loaded MEA solution in strippers[J]. Energy Procedia, 2017, 114: 1910-1918.
|
5 |
王成满, 赵耀. 热电厂CO2捕集与利用技术进展[J]. 广州化工, 2022, 50(20): 29-31.
|
|
WANG Chengman, ZHAO Yao. Technical progress on CO2 capture and utilization in thermal power plants[J]. Guangzhou Chemical Industry, 2022, 50(20): 29-31.
|
6 |
张艺峰, 王茹洁, 邱明英, 等. CO2捕集技术的研究现状[J]. 应用化工, 2021, 50(4): 1082-1086.
|
|
ZHANG Yifeng, WANG Rujie, QIU Mingying, et al. CO2 Capture technology research status[J]. Applied Chemical Industry, 2021, 50(4): 1082-1086.
|
7 |
张广宇, 赵健, 孙峰, 等. CO2催化转化制碳酸丙烯酯研究进展:催化剂设计、性能与反应机理[J]. 化工进展, 2022, 41(S1): 177-189.
|
|
ZHANG Guangyu, ZHAO Jian, SUN Feng, et al. Recent advances on catalytic conversion of CO2 into propylene carbonate:Catalyst design, performance and reaction mechanism[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 177-189.
|
8 |
孔祥宇, 谢亮, 王延民, 等. CO2的捕集及资源化利用[J]. 化工进展, 2022, 41(3): 1187-1198.
|
|
KONG Xiangyu, XIE Liang, WANG Yanmin, et al. CO2 capture and resource utilization[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1187-1198.
|
9 |
郭超, 陈绍云, 陈思铭, 等. 13C NMR定量分析一乙醇胺(MEA)与CO2的吸收和解吸特性[J]. 化工进展, 2014, 33(11): 3101-3106.
|
|
GUO Chao, CHEN Shaoyun, CHEN Siming, et al. Quantitative analysis on CO2 absorption and desorption in monoethanolamine(MEA) solution by using 13C NMR[J]. Chemical Industry and Engineering Progress, 2014, 33(11): 3101-3106.
|
10 |
XING Lei, WEI Kexin, LI Yuchen, et al. TiO2 coating strategy for robust catalysis of the metal-organic framework toward energy-efficient CO2 capture[J]. Environmental Science & Technology, 2021, 55(16): 11216-11224.
|
11 |
林海周, 裴爱国, 方梦祥. 燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J]. 化工进展, 2018, 37(12): 4874-4886.
|
|
LIN Haizhou, PEI Aiguo, FANG Mengxiang. Progress of research on process modifications for amine solvent-based post combustion CO2 capture from coal-fired power plant[J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4874-4886.
|
12 |
XING Lei, WEI Kexin, LI Qiangwei, et al. One-step synthesized SO4 2–/ZrO2-HZSM-5 solid acid catalyst for carbamate decomposition in CO2 capture[J]. Environmental Science & Technology, 2020, 54(21): 13944-13952.
|
13 |
ZHANG Xiaowen, HUANG Yufei, GAO Hongxia, et al. Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathway to reduce the energy consumption in amine-based CO2 capture process. Applied Energy, 2019, 240: 827-841.
|
14 |
WEI Ying, PARMENTIER Tanja E, DE JONG Krijn P, et al. Tailoring and visualizing the pore architecture of hierarchical zeolites[J]. Chemical Society Reviews, 2015, 44(20): 7234-7261.
|
15 |
ZHANG Ke, OSTRAAT Michele L. Innovations in hierarchical zeolite synthesis[J]. Catalysis Today, 2016, 264: 3-15.
|
16 |
GIRALDO L F, LÓPEZ B L, PÉREZ L, et al. Mesoporous silica applications[J]. Macromolecular Symposia, 2007, 258(1): 129-141.
|
17 |
GAO Hongxia, HUANG Yufei, ZHANG Xiaowen, et al. Catalytic performance and mechanism of SO4 2–/ ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution[J]. Applied Energy, 2020, 259: 114179.
|
18 |
WANG Tao, YU Wei, LIU Fei, et al. Enhanced CO2 absorption and desorption by monoethanolamine (MEA)-based nanoparticle suspensions[J]. Industrial & Engineering Chemistry Research, 2016, 55(28): 7830-7838.
|
19 |
SHI Huancong, HUANG Min, HUANG Yuandong, et al. CO2 absorption efficiency of various MEA-DEA blend with aid of CaCO3 and MgCO3 in a batch and semi-batch processes[J]. Separation and Purification Technology, 2019, 220: 102-113.
|
20 |
Jessica NARKU-TETTEH, AFARI Daniel B, COKER James, et al. Evaluation of the roles of absorber and desorber catalysts in the heat duty and heat of CO2 desorption from butylethanolamine-2-amino-2-methyl-1-propanol and monoethanolamine methyldiethanolamine solvent blends in a bench-scale CO2 capture pilot plant[J]. Energy & Fuels, 2018, 32(9): 9711-9726.
|
21 |
NATEWONG Paweesuda, PRASONGTHUM Natthawan, REUBROYCHAROEN Prasert, et al. Evaluating the CO2 capture performance using a BEA-AMP biblend amine solvent with novel high-performing absorber and desorber catalysts in a bench-scale CO2 capture pilot plant[J]. Energy & Fuels, 2019, 33(4): 3390-3402.
|
22 |
SHI Huancong, FU Junxing, WU Qiming, et al. Studies of the coordination effect of DEA-MEA blended amines (within 1+4 to 2+3M) under heterogeneous catalysis by means of absorption and desorption parameters[J]. Separation and Purification Technology, 2020, 236: 116179.
|
23 |
李年华, 刘元坤, 崔正浩, 等. 玄武岩纤维的性能及其应用[J]. 合成纤维, 2022, 51(12): 16-23.
|
|
LI Nianhua, LIU Yuankun, CUI Zhenghao, et al. Study on properties and application of basalt fiber[J]. Synthetic Fiber in China, 2022, 51(12): 16-23.
|
24 |
BAI Liju, LU Shijian, ZHAO Qizheng, et al. Low-energy-consuming CO2 capture by liquid-liquid biphasic absorbents of EMEA/DEEA/PX[J]. Chemical Engineering Journal, 2022, 450: 138490.
|
25 |
WANG Rujie, LIU Shanshan, WANG Lidong, et al. Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas[J]. Applied Energy, 2019, 242: 302-310.
|
26 |
NWAOHA C, IDEM R, SUPAP T, et al. Heat duty, heat of absorption, sensible heat and heat of vaporization of 2-Amino-2-Methyl-1-Propanol (AMP), Piperazine (PZ) and Monoethanolamine (MEA) tri–solvent blend for carbon dioxide (CO2) capture[J]. Chemical Engineering Science, 2017, 170: 26-35.
|
27 |
ZHANG Xiaowen, ZHANG Xin, LIU Helei, et al. Reduction of energy requirement of CO2 desorption from a rich CO2-loaded MEA solution by using solid acid catalysts[J]. Applied Energy, 2017, 202: 673-684.
|
28 |
CHEN Linlin, LU Shijian, ZHANG Lei, et al. Solid waste of fly ash toward energy-efficient CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(22): 8281-8293.
|
29 |
陈思铭, 张永春, 郭超, 等. 醇胺溶液吸收CO2的动力学研究进展[J]. 化工进展, 2014, 33(S1): 1-13.
|
|
CHEN Siming, ZHANG Yongchun, GUO Chao, et al. Reation kinetics of absorption of carbon dioxide with alkanolamines[J]. Chemical Industry and Engineering Progress, 2014, 33(S1): 1-13.
|
30 |
CAPLOW Michael. Kinetics of carbamate formation and breakdown[J]. Journal of the American Chemical Society, 1968, 90(24): 6795-6803.
|