1 |
LI Rongrong, YAO Wubing, JIN Yanxian, et al. Selective hydrogenation of the C ̿ C bond in cinnamaldehyde over an ultra-small Pd-Ag alloy catalyst[J]. Chemical Engineering Journal, 2018, 351: 995-1005.
|
2 |
HAN Shiying, LIU Yunfei, LI Jiang, et al. Improvement effect of Ni to Pd-Ni/SBA-15 catalyst for selective hydrogenation of cinnamaldehyde to hydrocinnamaldehyde[J]. Catalysts, 2018, 8(5): 200.
|
3 |
YANG Xu, WU Liangpeng, DU Li, et al. High performance Pd catalyst using silica modified titanate nanotubes (STNT) as support and its catalysis toward hydrogenation of cinnamaldehyde at ambient temperature[J]. RSC Advances, 2014, 4(108): 63062-63069.
|
4 |
Dipak DAS, Kamalesh PAL, LLORCA Jordi, et al. Chemoselective hydrogenation of cinnamaldehyde at atmospheric pressure over combustion synthesized Pd catalysts[J]. Reaction Kinetics, Mechanisms and Catalysis, 2017, 122(1): 135-153.
|
5 |
ZHAO Yuan, LIU Mingming, FAN Binbin, et al. Pd nanoparticles supported on ZIF-8 as an efficient heterogeneous catalyst for the selective hydrogenation of cinnamaldehyde[J]. Catalysis Communications, 2014, 57: 119-123.
|
6 |
YU Jianyan, YAN Li, TU Gaomei, et al. Magnetically responsive core-shell Pd/Fe3O4@C composite catalysts for the hydrogenation of cinnamaldehyde[J]. Catalysis Letters, 2014, 144(12): 2065-2070.
|
7 |
FUJIWARA Seika, TAKANASHI Naoto, NISHIYABU Ryuhei, et al. Boronate microparticle-supported nano-palladium and nano-gold catalysts for chemoselective hydrogenation of cinnamaldehyde in environmentally preferable solvents[J]. Green Chemistry, 2014, 16(6): 3230-3236.
|
8 |
XU Hailong, CHEN Miaomiao, JI Min. Solid Lewis acid-base pair catalysts constructed by regulations on defects of UiO-66 for the catalytic hydrogenation of cinnamaldehyde[J]. Catalysis Today, 2022, 402: 52-59.
|
9 |
CUI Haishuai, ZHONG Linhao, LV Yang, et al. A facile synthesis of in-situ formed amorphous zirconia catalysts for efficient transfer hydrogenation of unsaturated aldehydes[J]. Fuel, 2022, 317: 123551.
|
10 |
王颖杰, 祝新利. 溶胶-凝胶法制备高分散Ni-Cu/SiO2促进间甲酚直接脱氧制甲苯[J]. 化工进展, 2024, 43(7):3824-3833.
|
|
WANG Yingjie, ZHU Xinli. Preparation of highly dispersed Ni-Cu/SiO2 by sol-gel method to promote direct deoxygenation of m-cresol to toluene[J]. Chemical Industry and Engineering Progress, 2024, 43(7):3824-3833.
|
11 |
万成凤, 李志达, 张春月, 等. MXene负载CoP纳米棒高效电催化分解水制氢[J]. 化工进展, 2024, 43(6):3232-3239.
|
|
WAN Chengfeng, LI Zhida, ZHANG Chunyue, et al. MXene-loaded CoP nanorods for efficient electrocatalytic decomposition of water to produce hydrogen[J]. Chemical Industry and Engineering Progress, 2024, 43(6):3232-3239.
|
12 |
YUAN Zhenluo, ZHANG Dafeng, FAN Guangxin, et al. Synergistic effect of CeF3 nanoparticles supported on Ti3C2 MXene for catalyzing hydrogen storage of NaAlH4 [J]. ACS Applied Energy Materials, 2021, 4(3): 2820-2827.
|
13 |
LIU Anmin, YANG Qiyue, REN Xuefeng, et al. Two-dimensional CuAg/Ti3C2 catalyst for electrochemical synthesis of ammonia under ambient conditions: A combined experimental and theoretical study[J]. Sustainable Energy & Fuels, 2020, 4(10): 5061-5071.
|
14 |
LI Menghan, LUO Xuan, SU Tongming, et al. NiZr/N-doped TiO2/Ti3C2 catalyst for the selective hydrogenation of cinnamaldehyde: Effect of N-doping of TiO2 [J]. ChemistrySelect, 2023, 8(48): e202303437.
|
15 |
CHEN Liuyun, HUANG Kelin, XIE Qingruo, et al. The enhancement of photocatalytic CO2 reduction by the in situ growth of TiO2 on Ti3C2 MXene[J]. Catalysis Science & Technology, 2021, 11(4): 1602-1614.
|
16 |
GAO Han, ZHAO Binxia, LUO Jinchao, et al. Fe-Ni-Al pillared montmorillonite as a heterogeneous catalyst for the catalytic wet peroxide oxidation degradation of orange acid Ⅱ: Preparation condition and properties study[J]. Microporous and Mesoporous Materials, 2014, 196: 208-215.
|
17 |
ZHANG Guangcheng, FAN Guoli, YANG Lan, et al. Tuning surface-interface structures of ZrO2 supported copper catalysts by in situ introduction of indium to promote CO2 hydrogenation to methanol[J]. Applied Catalysis A: General, 2020, 605: 117805.
|
18 |
KE Tao, SHEN Shuyi, RAJAVEL Krishnamoorthy, et al. In situ growth of TiO2 nanoparticles on nitrogen-doped Ti3C2 with isopropyl amine toward enhanced photocatalytic activity[J]. Journal of Hazardous Materials, 2021, 402: 124066.
|
19 |
LI Hui, HAO Yubao, LU Haiqiang, et al. A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol-gel method[J]. Applied Surface Science, 2015, 344: 112-118.
|
20 |
ZHENG Rui, LI Chunhu, HUANG Kelei, et al. TiO2/Ti3C2 intercalated with g-C3N4 nanosheets as 3D/2D ternary heterojunctions photocatalyst for the enhanced photocatalytic reduction of nitrate with high N2 selectivity in aqueous solution[J]. Inorganic Chemistry Frontiers, 2021, 8(10): 2518-2531.
|
21 |
SU Tongming, HOOD Zachary D, NAGUIB Michael, et al. Monolayer Ti3C2T x as an effective co-catalyst for enhanced photocatalytic hydrogen production over TiO2 [J]. ACS Applied Energy Materials, 2019, 2(7): 4640-4651.
|
22 |
HE Jun, LIU Xiaoyi, DENG Yonghe, et al. Improved magnetic loss and impedance matching of the FeNi-decorated Ti3C2T x MXene composite toward the broadband microwave absorption performance[J]. Journal of Alloys and Compounds, 2021, 862: 158684.
|
23 |
WANG Fei, BI Yanshuai, CHEN Nan, et al. In-situ synthesis of Ni nanoparticles confined within SiO2 networks with interparticle mesopores with enhanced selectivity for cinnamaldehyde hydrogenation[J]. Chemical Physics Letters, 2018, 711: 152-155.
|
24 |
WU Zhaoxuan, YANG Bing, MIAO Shu, et al. Lattice strained Ni-Co alloy as a high-performance catalyst for catalytic dry reforming of methane[J]. ACS Catalysis, 2019, 9(4): 2693-2700.
|
25 |
YANG Chao, TAN Qiuyan, LI Qin, et al. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea[J]. Applied Catalysis B: Environmental, 2020, 268: 118738.
|
26 |
HUANG Kelei, LI Chunhu, ZHANG Xiuli, et al. Self-assembly synthesis of phosphorus-doped tubular g-C3N4/Ti3C2 MXene Schottky junction for boosting photocatalytic hydrogen evolution[J]. Green Energy & Environment, 2023, 8(1): 233-245.
|
27 |
HUANG Kelei, LI Chunhu, MENG Xiangchao. In-situ construction of ternary Ti3C2 MXene@TiO2/ZnIn2S4 composites for highly efficient photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science, 2020, 580: 669-680.
|
28 |
ROMERO-SÁEZ M, DONGIL A B, BENITO N, et al. CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: A comparison between two impregnation strategies[J]. Applied Catalysis B: Environmental, 2018, 237: 817-825.
|
29 |
GAO Xueying, YU Xin, PENG Lincai, et al. Magnetic Fe3O4 nanoparticles and ZrO2-doped mesoporous MCM-41 as a monolithic multifunctional catalyst for γ-valerolactone production directly from furfural[J]. Fuel, 2021, 300: 120996.
|
30 |
Mehmet AKÇAY. The surface acidity and characterization of Fe-montmorillonite probed by in situ FT-IR spectroscopy of adsorbed pyridine[J]. Applied Catalysis A: General, 2005, 294(2): 156-160.
|
31 |
WU Jianfeng, SU Tongming, JIANG Yuexiu, et al. In situ DRIFTS study of O3 adsorption on CaO, γ-Al2O3, CuO, α-Fe2O3 and ZnO at room temperature for the catalytic ozonation of cinnamaldehyde[J]. Applied Surface Science, 2017, 412: 290-305.
|
32 |
TRAVERT Arnaud, VIMONT Alexandre, LAVALLEY Jean-Claude. An example of misinterpretation of IR spectra of adsorbed species due to gas phase H2O: Comment on “The surface acidity and characterization of Fe-montmorillonite probed by in situ FT-IR spectroscopy of adsorbed pyridine” [Appl. Catal. A 294 (2005) 156-160][J]. Applied Catalysis A: General, 2006, 302(2): 333-334.
|
33 |
YANG Lan, JIANG Zhongshan, FAN Guoli, et al. The promotional effect of ZnO addition to supported Ni nanocatalysts from layered double hydroxide precursors on selective hydrogenation of citral[J]. Catalysis Science & Technology, 2014, 4(4): 1123-1131.
|
34 |
CHMIELARZ Lucjan, Piotr KUŚTROWSKI, ZBROJA Małorzata, et al. SCR of NO by NH3 on alumina or titania pillared montmorillonite modified with Cu or Co Part II. Temperature programmed studies[J]. Applied Catalysis B: Environmental, 2004, 53(1): 47-61.
|
35 |
WANG Xiaofeng, LIANG Xinhua, GENG Peng, et al. Recent advances in selective hydrogenation of cinnamaldehyde over supported metal-based catalysts[J]. ACS Catalysis, 2020, 10(4): 2395-2412.
|
36 |
LIU Hongli, LI Zhong, LI Yingwei. Chemoselective hydrogenation of cinnamaldehyde over a pt-lewis acid collaborative catalyst under ambient conditions[J]. Industrial & Engineering Chemistry Research, 2015, 54(5): 1487-1497.
|